Extension of the Standard Model with Chern–Simons Type Interaction

Authors

  • V. Gorkavenko Faculty of Physics, Taras Shevchenko National University of Kyiv
  • I. Hrynchak Faculty of Physics, Taras Shevchenko National University of Kyiv
  • O. Khasai Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • M. Tsarenkova Faculty of Physics, Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.11.832

Keywords:

beyond the standard model, extensions of gauge sector, Chern–Simons theories

Abstract

Extension of the Standard Model (SM) with a Chern–Simons type interaction contains a new vector massive boson (Chern–Simons boson) that couples to electroweak gauge bosons by the so-called effective Chern–Simons interaction. There is no direct interaction between the Chern–Simons bosons and SM fermions. We consider the existing restrictions on the parameters of this SM extension, the effective loop interaction of a new vector boson with SM fermions, and the possibility of the manifestation of the long-lived GeV-scale Chern–Simons bosons in collider experiments.

References

W.N. Cottingham, D.A. Greenwood. An Introduction to the Standard Model of Particle Physics (Cambridge University Press, 2023) [ISBN: 978-1-00-940168-5].

https://doi.org/10.1017/9781009401685

S.M. Bilenky, S.T. Petcov. Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 59, 671 (1987). [Erratum: Rev. Mod. Phys. 61, 169 (1989)

https://doi.org/10.1103/RevModPhys.61.169

Erratum: Mod. Phys. 60, 575 (1988)].

https://doi.org/10.1103/RevModPhys.60.575

A. Strumia, F. Vissani. Neutrino masses and mixings and... arXiv:hep-ph/0606054 (2006).

P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782, 633 (2018).

https://doi.org/10.1016/j.physletb.2018.06.019

P.J.E. Peebles. Dark Matter. Proc. Nat. Acad. Sci. 112, 2246 (2015).

https://doi.org/10.1073/pnas.1308786111

V. Lukovic, P. Cabella, N. Vittorio. Dark matter in cosmology. Int. J. Mod. Phys. A 29, 1443001 (2014).

https://doi.org/10.1142/S0217751X14430015

G. Bertone, D. Hooper. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).

https://doi.org/10.1103/RevModPhys.90.045002

M. Cirelli, A. Strumia, J. Zupan. Dark matter. arXiv:hepph/2406.01705 (2024).

G. Steigman. Observational tests of antimatter cosmologies. Ann. Rev. Astron. Astrophys. 14, 339 (1976).

https://doi.org/10.1146/annurev.aa.14.090176.002011

A. Riotto, M. Trodden. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).

https://doi.org/10.1146/annurev.nucl.49.1.35

L. Canetti, M. Drewes, M. Shaposhnikov. Matter and antimatter in the universe. New J. Phys. 14, 095012 (2012).

https://doi.org/10.1088/1367-2630/14/9/095012

T. Golling et al. Physics at a 100 TeV pp collider: Beyond the Standard Model phenomena. arXiv:1606.00947 (2016).

A. Abada et al. FCC physics opportunities: Future circular collider conceptual design report, Volume 1. Eur. Phys. J. C 79, 474 (2019).

https://doi.org/10.2172/1527435

V.M. Gorkavenko. Search for hidden particles in intensity frontier experiment SHiP. Ukr. J. Phys. 64, 689 (2019).

https://doi.org/10.15407/ujpe64.8.689

J. Beacham et al. Physics beyond colliders at CERN: Beyond the Standard Model working group report. J. Phys. G 47, 010501 (2020).

https://doi.org/10.1088/1361-6471/ab4cd2

G. Lanfranchi, M. Pospelov, P. Schuster. The search for feebly interacting particles. Ann. Rev. Nucl. Part. Sci. 71, 279 (2021).

https://doi.org/10.1146/annurev-nucl-102419-055056

C. Antel et al. Feebly interacting particles: FIPs 2022 workshop report. Eur. Phys. J. C 83, 1122 (2023).

D. Curtin et al. Long-lived particles at the energy frontier: The MATHUSLA physics case. Rept. Prog. Phys. 82, 116201 (2019).

S. Cerci et al. FACET: A new long-lived particle detector in the very forward region of the CMS experiment. arXiv:2201.00019 (2021).

https://doi.org/10.1007/JHEP06(2022)110

A. Ariga et al. Letter of intent for FASER: ForwArd search experiment at the LHC. arXiv:1811.10243 (2018) [Report number: CERN-LHCC-2018-030, LHCC-I-032, UCI-TR-2018-18, KYUSHU-RCAPP-2018-05].

A. Ariga et al. FASER's physics reach for long-lived particles. Phys. Rev. D 99, 095011 (2019).

https://doi.org/10.1103/PhysRevD.99.095011

M. Anelli et al. A facility to search for hidden particles (SHiP) at the CERN SPS. arXiv:1504.04956 (2015).

S. Alekhin et al. A facility to search for hidden particles at the CERN SPS: The SHiP physics case. Rept. Prog. Phys. 79, 124201 (2016).

P. Mermod. Prospects of the SHiP and NA62 experiments at CERN for hidden sector searches. PoS NuFact2017, 139 (2017).

https://doi.org/10.22323/1.295.0139

E. Cortina Gil et al. Search for heavy neutral lepton production in K+ decays. Phys. Lett. B 778, 137 (2018).

M. Drewes, J. Hajer, J. Klaric, G. lanfranchi. NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. JHEP 07, 105 (2018).

https://doi.org/10.1007/JHEP07(2018)105

R. Acciarri et al. Long-baseline neutrino facility (lbnf) and deep underground neutrino experiment (DUNE): Conceptual design report, Volume 2: The physics program for DUNE at LBNF. arXiv:1512.06148 (2015) [Report number: FERMILAB-DESIGN-2016-02].

B. Abi et al. Prospects for beyond the Standard Model physics searches at the deep underground neutrino experiment. Eur. Phys. J. C 81, 322 (2021).

V. Gorkavenko, B.K. Jashal, V. Kholoimov, Y. Kyselov, D. Mendoza, M. Ovchynnikov et al. LHCb potential to discover long-lived new physics particles with lifetimes above 100 ps. Eur. Phys. J. C 84, 608 (2024).

https://doi.org/10.1140/epjc/s10052-024-12906-3

B. Patt, F. Wilczek. Higgs-field portal into hidden sectors. arXiv:hep-ph/0605188 (2006).

F. Bezrukov, D. Gorbunov. Light inflaton Hunter's Guide. JHEP 05, 010 (2010).

https://doi.org/10.1007/JHEP05(2010)010

I. Boiarska, K. Bondarenko, A. Boyarsky, V. Gorkavenko, M. Ovchynnikov, A. Sokolenko. Phenomenology of GeVscale scalar portal. JHEP 11, 162 (2019).

https://doi.org/10.1007/JHEP11(2019)162

R.D. Peccei, H.R. Quinn. CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977).

https://doi.org/10.1103/PhysRevLett.38.1440

S. Weinberg. A new light Boson? Phys. Rev. Lett. 40, 223 (1978).

https://doi.org/10.1103/PhysRevLett.40.223

F. Wilczek. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978).

https://doi.org/10.1103/PhysRevLett.40.83

K. Choi, S.H. Im, C.S. Shin. Recent progress in physics of axions or axion-like particles. arXiv:2012.05029 (2020).

T. Asaka, M. Shaposhnikov. The vMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17 (2005).

https://doi.org/10.1016/j.physletb.2005.06.020

T. Asaka, S. Blanchet, M. Shaposhnikov. The nuMSM, dark matter and neutrino masses. Phys. Lett. B 631, 151 (2005)

https://doi.org/10.1016/j.physletb.2005.09.070

K. Bondarenko, A. Boyarsky, D. Gorbunov, O. Ruchayskiy. Phenomenology of GeV-scale heavy neutral leptons. JHEP 11, 032 (2018).

https://doi.org/10.1007/JHEP11(2018)032

A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy. Sterile neutrino Dark Matter. Prog. Part. Nucl. Phys. 104, 1 (2019).

https://doi.org/10.1016/j.ppnp.2018.07.004

L.B. Okun. Limits of electrodynamics: Paraphotons? Sov. Phys. JETP 56, 502 (1982).

B. Holdom. Two U(1)'s and epsilon charge shifts. Phys. Lett. B, 166 196 (1986).

https://doi.org/10.1016/0370-2693(86)91377-8

P. Langacker. The physics of heavy Z′ gauge bosons. Rev. Mod. Phys. 81, 1199 (2009).

https://doi.org/10.1103/RevModPhys.81.1199

P. Ilten, Y. Soreq, M. Williams, Wei Xue. Seren10.1007/ JHEP06(2018)004dipity in dark photon searches. JHEP 06, 004 (2018).

https://doi.org/10.1007/JHEP06(2018)004

I. Antoniadis, E. Kiritsis, T.N. Tomaras. A D-brane alternative to unification. Phys. Lett. B 486, 186 (2000).

https://doi.org/10.1016/S0370-2693(00)00733-4

C. Coriano, N. Irges, E. Kiritsis. On the effective theory of low scale orientifold string vacua. Nucl. Phys. B 746, 77 (2006).

https://doi.org/10.1016/j.nuclphysb.2006.04.009

P. Anastasopoulos, M. Bianchi, E. Dudas, E. Kiritsis. Anomalies, anomalous U(1)'s and generalized Chern-Simons terms. JHEP 11, 057 (2006).

https://doi.org/10.1088/1126-6708/2006/11/057

J.A. Harvey, C.T. Hill, R.J. Hill. Standard model gauging of the Wess-Zumino-Witten term: Anomalies, global currents and pseudo-Chern-Simons Interactions. Phys. Rev. D 77, 085017 (2008).

https://doi.org/10.1103/PhysRevD.77.085017

P. Anastasopoulos, F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi, Y.S. Stanev. Minimal anomalous U(1)-prime extension of the MSSM. Phys. Rev. D 78, 085014 (2008).

https://doi.org/10.1103/PhysRevD.78.085014

J. Kumar, A. Rajaraman, J.D. Wells. Probing the greenschwarz mechanism at the large hadron collider. Phys. Rev. D 77, 066011 (2008).

https://doi.org/10.1103/PhysRevD.77.066011

I. Antoniadis, A. Boyarsky, S. Espahbodi, O. Ruchayskiy, J.D. Wells. Anomaly driven signatures of new invisible physics at the large hadron collider. Nucl. Phys. B 824, 296 (2010).

https://doi.org/10.1016/j.nuclphysb.2009.09.009

H. Ruegg, M. Ruiz-Altaba. The stueckelberg field. Int. J. Mod. Phys. A 19, 3265 (2004).

https://doi.org/10.1142/S0217751X04019755

G.D. Kribs, G. Lee, A. Martin. Effective field theory of St¨uckelberg vector bosons. Phys. Rev. D 106, 055020 (2022).

https://doi.org/10.1103/PhysRevD.106.055020

S. Navas et al. (Particle Data Group). Phys. Rev. D 110, 030001 (2024).

M. Acciarri at al. Search for new physics in energetic single photon production in e+e− annihilation at the Z resonance. Phys. Lett. B 412, 201 (1997).

J.A. Dror, R. Lasenby, M. Pospelov. New constraints on light vectors coupled to anomalous currents. Phys. Rev. Lett. 119, 141803 (2017).

https://doi.org/10.1103/PhysRevLett.119.141803

J.A. Dror, R. Lasenby, M. Pospelov. Dark forces coupled to nonconserved currents. Phys. Rev. D 96, 075036 (2017).

https://doi.org/10.1103/PhysRevD.96.075036

Y. Borysenkova, P. Kashko, M. Tsarenkova, K. Bondarenko, V. Gorkavenko. Production of Chern-Simons bosons in decays of mesons. J. Phys. G 49, 085003 (2022).

https://doi.org/10.1088/1361-6471/ac77a7

Y. Borysenkova, V. Gorkavenko, I. Hrynchak, O. Khasai, M. Tsarenkova. Divergences in the effective loop interaction of the Chern-Simons bosons with leptons. The unitary gauge case. arXiv:hep-ph/2405.00164 (2024).

M. Ovchynnikov, J.-L. Tastet, O. Mikulenko, K. Bondarenko. Sensitivities to feebly interacting particles: Public and unified calculations. Phys. Rev. D 108, 075028 (2023).

https://doi.org/10.1103/PhysRevD.108.075028

Published

2024-12-03

How to Cite

Gorkavenko, V., Hrynchak, I., Khasai, O., & Tsarenkova, M. (2024). Extension of the Standard Model with Chern–Simons Type Interaction. Ukrainian Journal of Physics, 69(11), 832. https://doi.org/10.15407/ujpe69.11.832

Issue

Section

Theory