Phase Diagrams of a Relativistic Self-Interacting Boson System

Authors

  • V. Gnatovskyy Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • D. Anchishkin Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Frankfurt Institute for Advanced Studies
  • D. Zhuravel Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. Karpenko Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.8.560

Keywords:

relativistic bosonic system, Bose–Einstein condensation, phase transition

Abstract

Within the Canonical Ensemble, we investigate a system of interacting relativistic bosons at finite temperatures and finite isospin densities in a mean-field approach. The mean field contains both attractive and repulsive terms. Temperature and isospin density dependences of thermodynamic quantities are obtained. It is shown that, in the case of attraction between particles in a bosonic system, a liquid-gas phase transition develops against the background of the Bose–Einstein condensate. The corresponding phase diagrams are given. We explain the reasons for why the presence of a Bose condensate significantly increases the critical temperature of the liquid-gas phase transition compared to that obtained for the same system within the framework of Boltzmann statistics. Our results may have implications for the interpretation of experimental data, in particular, how sensitive the critical point of the mixed phase is to the presence of the Bose–Einstein condensate.

References

A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu. Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Reports 853, 1 (2020).

https://doi.org/10.1016/j.physrep.2020.01.005

A. Anselm, M. Ryskin. Production of classical pion field in heavy ion high energy collisions. Phys. Lett. B 226, 482 (1991).

https://doi.org/10.1016/0370-2693(91)91073-5

J.-P. Blaizot, Krzwitski. Soft-pion emission in high-energy heavy-ion collisions. Phys. Rev. D 46, 246 (1992).

https://doi.org/10.1103/PhysRevD.46.246

J.D. Bjorken. A full-acceptance detector for SSC physics at low and intermediate mass scales: an expression of interest to the SSC. Intern. J. Mod. Phys. A 7, 4189 (1992).

https://doi.org/10.1142/S0217751X92001885

I.N. Mishustin, W. Greiner. Multipion droplets. J. Phys. G 19, L101 (1993).

https://doi.org/10.1088/0954-3899/19/7/001

D.T. Son, M.A. Stephanov. QCD at finite isospin density. Phys. Rev. Lett. 86, 592 (2001).

https://doi.org/10.1103/PhysRevLett.86.592

J. Kogut, D. Toublan. QCD at small non-zero quark chemical potentials. Phys. Rev. D 64, 034007 (2001).

https://doi.org/10.1103/PhysRevD.64.034007

D. Toublan, J. Kogut. Isospin chemical potential and the QCD phase diagram at nonzero temperature and baryon chemical potential. Phys. Lett. B 564, 212 (2001).

https://doi.org/10.1016/S0370-2693(03)00701-9

A. Mammarella, M. Mannarelli. Intriguing aspects of meson condensation. Phys. Rev. D 92, 085025 (2015).

https://doi.org/10.1103/PhysRevD.92.085025

S. Carignano, L. Lepori, A. Mammarella, M. Mannarelli, G. Pagliaroli. Scrutinizing the pion condensed phase. Eur. Phys. J. A 53, 35 (2017).

https://doi.org/10.1140/epja/i2017-12221-x

M. Mannarelli. Meson condensation. Particles 2, 411 (2019).

https://doi.org/10.3390/particles2030025

B.B. Brandt, G. Endr˝odi. QCD phase diagram with isospin chemical potential. PoS LATTICE 2016 039 (2016).

https://doi.org/10.22323/1.256.0039

B.B. Brandt, G. Endr˝odi, S. Schmalzbauer. QCD at finite isospin chemical potential. EPJ Web Conf. 175, 07020 (2018).

https://doi.org/10.1051/epjconf/201817507020

B.B. Brandt, G. Endr˝odi, and S. Schmalzbauer. QCD phase diagram for nonzero isospin-asymmetry. Phys. Rev. D 97, 054514 (2018).

https://doi.org/10.1103/PhysRevD.97.054514

D. Anchishkin, I. Mishustin, H. Stoecker. Phase transition in interacting boson system at finite temperatures. J. Phys. G 46, 035002 (2019).

https://doi.org/10.1088/1361-6471/aafea8

I.N. Mishustin, D.V. Anchishkin, L.M. Satarov, O.S. Stashko, H. Stoecker. Condensation of interacting scalar bosons at finite temperatures. Phys. Rev. C 100, 022201(R) (2019).

https://doi.org/10.1103/PhysRevC.100.022201

D. Anchishkin, I. Mishustin, O. Stashko, D. Zhuravel, H. Stoecker. Finite-temperature Bose-Einstein condensation in interacting boson system. Ukr. J. Phys. 64, 1118 (2019).

https://doi.org/10.15407/ujpe64.12.1118

O.S. Stashko, D.V. Anchishkin, O.V. Savchuk, M.I. Gorenstein. Thermodynamic properties of interacting bosons with zero chemical potential. J. Phys. G 48, 055106 (2020).

https://doi.org/10.1088/1361-6471/abd5a5

D. Anchishkin, V. Gnatovskyy, D. Zhuravel, V. Karpenko. Selfinteracting particle-antiparticle system of Bosons. Phys. Rev. C 105, 045205 (2022).

https://doi.org/10.1103/PhysRevC.105.045205

D. Anchishkin, V. Vovchenko. Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions. J. Phys. G 42, 105102 (2015).

https://doi.org/10.1088/0954-3899/42/10/105102

D.V. Anchishkin. Particle finite-size effects as a mean-field approximation. Sov. Phys. JETP 75, 195 (1992).

D. Anchishkin, E. Suhonen. Generalization of meanfield models to account for effects of excluded-volume. Nucl. Phys. A 586, 734 (1995).

https://doi.org/10.1016/0375-9474(94)00822-5

R.V. Poberezhnyuk, V. Yu. Vovchenko, D.V. Anchishkin, M.I. Gorenstein. Limiting temperature of pion gas with the van der Waals equation of state. J. Phys. G 43, 095105 (2016).

https://doi.org/10.1088/0954-3899/43/9/095105

E.E. Kolomeitsev, D.N. Voskresensky. Fluctuations in nonideal pion gas with dynamically fixed particle number. Nucl. Phys. A 973, 89 (2018).

https://doi.org/10.1016/j.nuclphysa.2018.02.010

E.E. Kolomeitsev, M.E. Borisov, D.N. Voskresensky. Particle number fluctuations in a non-ideal pion gas. EPJ Web of Conferences 182, 02066 (2018).

https://doi.org/10.1051/epjconf/201818202066

E.E. Kolomeitsev, D.N. Voskresensky, M.E. Borisov. Charge and isospin fluctuations in a non-ideal pion gas with dynamically fixed particle number. Europ. Phys. J. A 57, 145 (2021).

https://doi.org/10.1140/epja/s10050-021-00457-0

L. Adamczyk et al. [STAR Collab.]. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 96, 044904 (2017).

B. Abelev et al. [ALICE Collab.]. Pion, kaon, and proton production in central Pb-Pb collisions at √sNN = 2.76 TeV. Phys. Rev. Lett. 109, 252301 (2012).

J.P. Hansen, I.R. McDonald. Theory of Simple Liquids (Academic Press, 2006) [ISBN: 9781493300846].

L.M. Satarov, M.I. Gorenstein, A. Motornenko, V. Vovchenko, I.N. Mishustin, H. Stoecker. Bose-Einstein condensation and liquid-gas phase transition in alpha-matter. J. Phys. G 44, 125102 (2017).

https://doi.org/10.1088/1361-6471/aa8c5d

V. Vovchenko, D.V. Anchishkin M.I. Gorenstein. Van der Waals equation of state with Fermi statistics for nuclear matter. Phys. Rev. C 91, 064314 (2015).

https://doi.org/10.1103/PhysRevC.91.064314

J. B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada, J. Wang. Limiting temperatures and the equation of state of nuclear matter. Phys. Rev. Lett. 89, 212701 (2002).

https://doi.org/10.1103/PhysRevLett.89.212701

V.A. Karnaukhov et al. Critical temperature for the nuclear liquid gas phase transition. Phys. Rev. C 67, 011601 (2003).

https://doi.org/10.1103/PhysRevC.67.011601

Published

2024-09-18

How to Cite

Gnatovskyy, V., Anchishkin, D., Zhuravel, D., & Karpenko, V. (2024). Phase Diagrams of a Relativistic Self-Interacting Boson System. Ukrainian Journal of Physics, 69(8), 560. https://doi.org/10.15407/ujpe69.8.560

Issue

Section

General physics

Most read articles by the same author(s)