Interferometry and Dynamics of a Transmon-Type Qubit in Front of a Mirror

Authors

  • M.P. Liul B. Verkin Institute for Low Temperature Physics and Engineering, Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research

DOI:

https://doi.org/10.15407/ujpe70.1.16

Keywords:

transmon-type qubit, two-level quantum system, density matrix, Lindblad equation, quantum interference

Abstract

We will theoretically describe the stationary regime and coherent dynamics of a capacitively shunted transmon-type qubit which is placed in front of a mirror. The considered qubit is irradiated by two signals: pump (dressing) and probe. By changing the amplitudes and frequencies of these signals, we will study the system behavior. The main tool of our theoretical analysis is solving the Lindblad equation. We also discuss the transfer of Lindblad superoperators from the energy basis to the charge one. Theoretically obtained occupation probability is related to the experimentally measured value. This study helps to understand better the properties of qubit-mirror system and gives new insights about the underlying physical processes.

References

M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).

A.F. Kockum, F. Nori. Quantum bits with Josephson junctions. In: Fundamentals and Frontiers of the Josephson Effect (Springer International Publishing, 2019).

https://doi.org/10.1007/978-3-030-20726-7_17

W.D. Oliver, P.B. Welander. Materials in superconducting quantum bits. MRS Bulletin 38, 816 (2013).

https://doi.org/10.1557/mrs.2013.229

I.-C. Hoi, A.F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, C.M. Wilson. Probing the quantum vacuum with an artificial atom in front of a mirror. Nat. Phys. 11, 1045 (2015). arXiv:1410.8840v1 [quant-ph].

https://doi.org/10.1038/nphys3484

B. Kannan, M.J. Ruckriegel, D.L. Campbell, A.F. Kockum, J. Braumuller, D.K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B.M. Niedzielski, A. Vepsalainen, R. Winik, J.L. Yoder, F. Nori, T.P. Orlando, S. Gustavsson, W.D. Oliver. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775 (2020). arXiv:1912.12233v3 [quant-ph].

https://doi.org/10.1038/s41586-020-2529-9

P.Y. Wen, A.F. Kockum, H. Ian, J.C. Chen, F. Nori, I.-C. Hoi. Reflective amplification without population inversion from a strongly driven superconducting qubit. Phys. Rev. Lett. 120, 063603 (2018).

https://doi.org/10.1103/PhysRevLett.120.063603

X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929 (2007).

https://doi.org/10.1126/science.1142979

F.Y. Wu, S. Ezekiel, M. Ducloy, B.R. Mollow. Observation of amplification in a strongly driven two-level atomic system at optical frequencies. Phys. Rev. Lett. 38, 1077 (1977).

https://doi.org/10.1103/PhysRevLett.38.1077

M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P.B. Dieterle, A.J. Keller, A. Asenjo-Garcia, D.E. Chang, O. Painter. Cavity quantum electrodynamics with atomlike mirrors. Nature 569, 692 (2019).

https://doi.org/10.1038/s41586-019-1196-1

P.Y. Wen, K.-T. Lin, A.F. Kockum, B. Suri, H. Ian, J.C. Chen, S.Y. Mao, C.C. Chiu, P. Delsing, F. Nori, G.-D. Lin, I.-C. Hoi. Large collective Lamb shift of two distant superconducting artificial atoms. Phys. Rev. Lett. 123, 233602 (2019).

https://doi.org/10.1103/PhysRevLett.123.233602

C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J.R. Johansson, T. Duty, F. Nori, P. Delsing. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011).

https://doi.org/10.1038/nature10561

I.-C. Hoi, A.F. Kockum, T. Palomaki, T.M. Stace, B. Fan, L. Tornberg, S.R. Sathyamoorthy, G. Johansson, P. Delsing, C.M. Wilson. Giant Cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013).

https://doi.org/10.1103/PhysRevLett.111.053601

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, C.M. Wilson. Generation of nonclassical microwave states using an artificial atom in 1D open space. Phys. Rev. Lett. 108, 263601 (2012).

https://doi.org/10.1103/PhysRevLett.108.263601

D. Karpov, V. Monarkha, D. Szombati, A. Frieiro, A. Omelyanchouk, E. Il'ichev, A. Fedorov, S. Shevchenko. Probabilistic motional averaging. Eur. Phys. J. B 93, 49 (2020).

https://doi.org/10.1140/epjb/e2019-100514-8

I.-C. Hoi, C.M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing. Demonstration of a singlephoton router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011).

https://doi.org/10.1103/PhysRevLett.107.073601

O.V. Ivakhnenko, S.N. Shevchenko, F. Nori. Nonadiabatic Landau-Zener-Stuckelberg-Majorana transitions, dynamics and interference. Phys. Rep. 995, 1 (2023).

https://doi.org/10.1016/j.physrep.2022.10.002

S.N. Shevchenko. Mesoscopic Physics meets Quantum Engineering (World Scientific, 2019).

https://doi.org/10.1142/11310

M.P. Liul, A.I. Ryzhov, S.N. Shevchenko. Rate equation approach for a charge qudit. Eur. Phys. J.: Spec. Top. (2023).

D.L. Campbell, Y.-P.Shim, B. Kannan, R. Winik, D.K. Kim, A. Melville, B.M. Niedzielski, J.L. Yoder, C. Tahan, S. Gustavsson, W.D. Oliver. Universal nonadiabatic control of small-gap superconducting qubits. Phys. Rev. X 10, 041051 (2020).

https://doi.org/10.1103/PhysRevX.10.041051

M.P. Liul, C.-H. Chien, C.-Y. Chen, P.Y. Wen, J.C. Chen, Y.-H. Lin, S.N. Shevchenko, F. Nori, I.-C. Hoi. Coherent dynamics of a photon-dressed qubit. Phys. Rev. B 107, 195441 (2023).

https://doi.org/10.1103/PhysRevB.107.195441

P.Y. Wen, O.V. Ivakhnenko, M.A. Nakonechnyi, B. Suri, J.-J. Lin, W.-J. Lin, J.C. Chen, S.N. Shevchenko, F. Nori, I.-C. Hoi. Landau-Zener-Stuckelberg-Majorana interferometry of a superconducting qubit in front of a mirror. Phys. Rev. B 102, 075448 (2020).

https://doi.org/10.1103/PhysRevB.102.075448

M. Silveri, K. Kumar, J. Tuorila, J. Li, A. Vepsalainen, E. Thuneberg, G. Paraoanu. Stueckelberg interference in a superconducting qubit under periodic latching modulation. New J. Phys. 17, 043058 (2015).

https://doi.org/10.1088/1367-2630/17/4/043058

Downloads

Published

2025-01-18

How to Cite

Liul, M. (2025). Interferometry and Dynamics of a Transmon-Type Qubit in Front of a Mirror. Ukrainian Journal of Physics, 70(1), 16. https://doi.org/10.15407/ujpe70.1.16

Issue

Section

General physics