Symmetry and Value of the Order Parameter in 2d Nematic Superconductors

Authors

  • V.M. Loktev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. Turkowski Department of Physics, University of Central Florida

DOI:

https://doi.org/10.15407/ujpe69.8.528

Keywords:

theory of superconductivity, 2D systems, nematicity

Abstract

We derive equations for the superconducting nematic order parameter and chemical potential for the hexagonal lattice by accounting for nearest- and next-nearest-neighbor hoppings of electrons. By analyzing the energy of the superconducting ground state, we have found that the symmetry of the order parameter and some other superconducting properties of the system strongly depend on the sign and the magnitude of the next-nearest neighbor hopping. As we will demonstrate, both extended s- and d-pairings significantly contribute to the pairing in the system, that be tuned by changing the hopping parameters. We discuss a possible connection of the obtained results to the properties of several doped monolayer superconductors – graphene and transition metal dichalcogenides.

References

B. Uchoa, G.G. Cabrera, A.H. Castro Neto. Nodal liquid and s-wave superconductivity in transition metal dichalcogenides. Phys. Rev. B 71, 184509 (2005).

https://doi.org/10.1103/PhysRevB.71.184509

B. Uchoa, A.H. Castro Neto. Superconducting states of pure and doped graphene. Phys. Rev. Lett. 98, 146801 (2007).

https://doi.org/10.1103/PhysRevLett.98.146801

E. Zhao, A. Paramekanti. BCS-BEC crossover on the two-dimensional honeycomb lattice. Phys. Rev. Lett. 97, 230404 (2006).

https://doi.org/10.1103/PhysRevLett.97.230404

V.M. Loktev, V. Turkowski. Suppression of the superconducting transition temperature of doped graphene due to thermal fluctuations of the order parameter. Phys. Rev. B 79, 233402 (2009).

https://doi.org/10.1103/PhysRevB.79.233402

G. Savini, A.C. Ferrari, F. Giustino. First-principles prediction of doped graphane as a high-temperature electronphonon superconductor. Phys. Rev. Lett. 105, 037002 (2010).

https://doi.org/10.1103/PhysRevLett.105.037002

V.M. Loktev, V. Turkowski. Possible high-temperature superconductivity in multilayer graphane: Can the cuprates be beaten? J. Low Temp. Phys. 164, 264 (2011).

https://doi.org/10.1007/s10909-011-0376-7

M. Black-Schaffer, C. Honerkamp. Chiral d-wave superconductivity in doped graphene. J. Phys.: Condens. Matter 26, 423201 (2014).

https://doi.org/10.1088/0953-8984/26/42/423201

E.R. Margine, F. Giustino. Two-gap superconductivity in heavily-doped graphene: Ab initio Migdal-Eliashberg theory. Phys. Rev. B 90, 014518 (2014).

https://doi.org/10.1103/PhysRevB.90.014518

A. Garc'ıa-Ruiz, M. Mucha-Kruczy'nski, V.I. Fal'ko. Superconductivity-induced features in the electronic Raman spectrum of monolayer graphene. Phys. Rev. B 97, 155405 (2018).

https://doi.org/10.1103/PhysRevB.97.155405

R.T. Tagiyeva Askerbeyli, I.N. Askerzade. BCS superconductivity of Dirac electrons in graphene monolayer. J. Supercond. Novel Magnet. 32, 1871 (2019).

https://doi.org/10.1007/s10948-018-4901-7

E. Thingstad, A. Kamra, J.W. Wells, A. Sudbø. Phononmediated superconductivity in doped monolayer materials. Phys. Rev. B 101, 214513 (2020).

https://doi.org/10.1103/PhysRevB.101.214513

A.L. Szab'o, B. Roy. Extended Hubbard model in undoped and doped monolayer and bilayer graphene: Selection rules and organizing principle among competing orders. Phys. Rev. B 103, 205135 (2021).

https://doi.org/10.1103/PhysRevB.103.205135

D. Qiu, C. Gong, S.S. Wang, M. Zhang, C. Yang, X. Wang, J. Xiong. Recent advances in 2D superconductors. Adv. Mater. 33, 2006124 (2021).

https://doi.org/10.1002/adma.202006124

A.M. Black-Schaffer, K. Le Hur. Topological superconductivity in two dimensions with mixed chirality. Phys. Rev. B 92, 140503(R) (2015).

https://doi.org/10.1103/PhysRevB.92.140503

J.P.L. Faye, P. Sahebsara, D. Senechal. Chiral triplet superconductivity on the graphene lattice. Phys. Rev. B 92, 085121 (2015).

https://doi.org/10.1103/PhysRevB.92.085121

J. Yuan, C. Honerkamp. Triplet pairing driven by Hund's coupling in doped monolayer MoS2. Preprint arXiv: 1504.04536v2 (2015).

D.-H. Lee, C.-H. Chung. Non-centrosymmetric superconductors on honeycomb lattice. Phys. Status Solidi B 255, 1800114 (2018).

https://doi.org/10.1002/pssb.201800114

Y.F. Suprunenko, E.V. Gorbar, V.M. Loktev, S.G. Sharapov. Effect of next-nearest-neighbor hopping on the electronic properties of graphene. Low Temp. Phys. 34, 812 (2008).

https://doi.org/10.1063/1.2981394

T. Farajollahpour, A.H. Rezvani, M.R. Khodarahmi, M. Arasteh. Next nearest neighbors effects on berry curvature of graphene. Acta Phys. Polonica A 122, 180 (2012).

https://doi.org/10.12693/APhysPolA.122.180

L.-Y. Xiao, S.-L. Yu, W. Wang, Z.-J. Yao, J.-X. Li. Possible singlet and triplet superconductivity on honeycomb lattice. Eur. Phys. Lett. 115, 27008 (2016).

https://doi.org/10.1209/0295-5075/115/27008

X. Zhu, T. Ying, H. Guo, S. Feng. Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice. Chin. Phys. B 28, 077401 (2019).

https://doi.org/10.1088/1674-1056/28/7/077401

L. Classen, A.V. Chubukov, C. Honerkamp, M.M. Scherer. Competing orders at higher-order Van Hove points. Phys. Rev. B 102, 125141 (2020).

https://doi.org/10.1103/PhysRevB.102.125141

P. Jia, S. Yang, W. Li, J. Yang, T. Ying, X. Li, X. Sun. Pairing in the Hubbard model on the honeycomb lattice with hopping up to the third-nearest-neighbor. Phys. Lett. A 442, 128175 (2022).

https://doi.org/10.1016/j.physleta.2022.128175

X.-D. Li, H.-R. Liu, Z.-D. Yu, C.-D. Gong, S.-L. Yu, Y. Zhou. Mixture of the nearest- and next-nearest-neighbor d + id-wave pairings on the honeycomb lattice. New J. Phys. 24, 103035 (2022).

https://doi.org/10.1088/1367-2630/ac974a

J. Wang, X. Zhang, R. Ma, G. Yang, E.V. Castro, T. Ma. Spin-triplet superconducting pairing in doped MoS2. Phys. Rev. B 106, 134513 (2022).

https://doi.org/10.1103/PhysRevB.106.134513

X. Han, A.P. Schnyder, X. Wu. Enhanced nematicity emerging from higher-order Van Hove singularities. Phys. Rev. B 107, 184504 (2023).

https://doi.org/10.1103/PhysRevB.107.184504

L. Fu. Odd-parity topological superconductor with nematic order: Application to CuxBi2Se3. Phys. Rev. B 90, 100509(R) (2014).

S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K. Segawa, Y. Ando, Y. Maeno. Thermodynamic evidence for nematic superconductivity in CuxBi2Se3. Nature Phys. 13, 123 (2017).

https://doi.org/10.1038/nphys3907

S. Wolf, D. Di Sante, T. Schwemmer, R. Thomale, S. Rachel. Triplet superconductivity from nonlocal Coulomb repulsion in an atomic Sn layer deposited onto a Si(111) substrate. Phys. Rev. Lett. 128, 167002 (2022).

https://doi.org/10.1103/PhysRevLett.128.167002

P. Rosenzweig, H. Karakachian, D. Marchenko, K. K¨uster, U. Starke. Overdoping graphene beyond the van Hove singularity. Phys. Rev. Lett. 125, 176403 (2020).

https://doi.org/10.1103/PhysRevLett.125.176403

Published

2024-09-18

How to Cite

Loktev, V., & Turkowski, V. (2024). Symmetry and Value of the Order Parameter in 2d Nematic Superconductors. Ukrainian Journal of Physics, 69(8), 528. https://doi.org/10.15407/ujpe69.8.528

Issue

Section

General physics

Most read articles by the same author(s)