Beyond Einstein’s General Relativity: Hybrid Metric-Palatini Gravity
DOI:
https://doi.org/10.15407/ujpe69.7.439Keywords:
general relativity, modified gravity, hybrid metric-Palatini gravityAbstract
It has been established that both metric and Palatini versions of f (R) gravity have interesting features, but also manifest several downsides. A hybrid combination of theories, containing elements from both formalisms, turns out to be very successful in accounting for the observed phenomenology and it is able to avoid some drawbacks of the original approaches. Here, we explore the formulation in a dynamically equivalent scalar-tensor form of this hybrid metricPalatini approach. We present several of its main achievements, such as, passing the Solar System observational tests even if the scalar field is very light or massless, and outline several applications to astrophysical and cosmological scenarios. Furthermore, we also explore the viability of generalized hybrid metric-Palatini gravitational theories.
References
S. Capozziello. Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002).
https://doi.org/10.1142/S0218271802002025
S. Capozziello, M. De Laurentis. Extended theories of gravity. Phys. Rept. 509, 167 (2011).
https://doi.org/10.1016/j.physrep.2011.09.003
S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner. Is cosmic speed - up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004).
https://doi.org/10.1103/PhysRevD.70.043528
E.J. Copeland, M. Sami, S. Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006).
https://doi.org/10.1142/S021827180600942X
A. De Felice, S. Tsujikawa. f (R) theories. Living Rev. Rel. 13, 3 (2010).
https://doi.org/10.12942/lrr-2010-3
F.S.N. Lobo. The Dark side of gravity: Modified theories of gravity. [arXiv:0807.1640 [gr-qc]].
S. Nojiri, S.D. Odintsov. Unified cosmic history in modified gravity: From f (R) theory to Lorentz non-invariant models. Phys. Rept. 505, 59 (2011).
https://doi.org/10.1016/j.physrep.2011.04.001
P. Avelino, T. Barreiro, C.S. Carvalho, A. da Silva, F.S.N. Lobo, P. Martin-Moruno, J.P. Mimoso, N.J. Nunes, D. Rubiera-Garcia, D. Saez-Gomez et al. Unveiling the Dynamics of the Universe. Symmetry 8 (8), 70 (2016).
https://doi.org/10.3390/sym8080070
E.N. Saridakis et al. [CANTATA]. Modified Gravity and Cosmology: An Update by the CANTATA Network (Springer, 2021) [ISBN: 978-3-030-83714-3, 978-3-030-83717-4, 978-3-030-83715-0]. [arXiv:2105.12582 [gr-qc]].
G.J. Olmo. Palatini approach to modified gravity: f (R) theories and beyond. Int. J. Mod. Phys. D 20, 413 (2011).
https://doi.org/10.1142/S0218271811018925
A. Joyce, B. Jain, J. Khoury, M. Trodden. Beyond the cosmological standard model. Phys. Rept. 568, 1 (2015).
https://doi.org/10.1016/j.physrep.2014.12.002
P. Brax. Screened modified gravity. Acta Phys. Polon. B 43, 2307 (2012).
https://doi.org/10.5506/APhysPolB.43.2307
T.S. Koivisto, D.F. Mota, M. Zumalacarregui. Screening modifications of gravity through disformally coupled fields. Phys. Rev. Lett. 109, 241102 (2012).
https://doi.org/10.1103/PhysRevLett.109.241102
P. Brax, A.C. Davis, B. Li, H.A. Winther. A unified description of screened modified gravity. Phys. Rev. D 86, 044015 (2012).
https://doi.org/10.1103/PhysRevD.86.044015
T. Koivisto. The matter power spectrum in f (R) gravity. Phys. Rev. D 73, 083517 (2006).
https://doi.org/10.1103/PhysRevD.73.083517
T. Koivisto, H. Kurki-Suonio. Cosmological perturbations in the palatini formulation of modified gravity. Class. Quant. Grav. 23, 2355 (2006).
https://doi.org/10.1088/0264-9381/23/7/009
G.J. Olmo. Violation of the equivalence principle in modified theories of gravity. Phys. Rev. Lett. 98, 061101 (2007).
https://doi.org/10.1103/PhysRevLett.98.061101
G.J. Olmo. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D 77, 084021 (2008).
https://doi.org/10.1103/PhysRevD.77.084021
S. Capozziello, T. Harko, F.S.N. Lobo, G.J. Olmo. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D 22, 1342006 (2013).
https://doi.org/10.1142/S0218271813420066
T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. MetricPalatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 85, 084016 (2012).
https://doi.org/10.1103/PhysRevD.85.084016
T. Harko, F.S.N. Lobo. Beyond Einstein's general relativity: Hybrid metric-Palatini gravity and curvature-matter couplings. Int. J. Mod. Phys. D 29 (13), 2030008 (2020).
https://doi.org/10.1142/S0218271820300086
S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Hybrid metric-Palatini gravity. Universe 1 (2), 199 (2015).
https://doi.org/10.3390/universe1020199
T. Harko, F.S.N. Lobo. Extensions of f (R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory (Cambridge University Press, 2018) [ISBN: 978-1-108-42874-3, 978-1-108-58457-9].
https://doi.org/10.1017/9781108645683
T. Koivisto. Covariant conservation of energy momentum in modified gravities. Class. Quant. Grav. 23, 4289 (2006).
https://doi.org/10.1088/0264-9381/23/12/N01
G. Allemandi, A. Borowiec, M. Francaviglia, S.D. Odintsov. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 72, 063505 (2005).
https://doi.org/10.1103/PhysRevD.72.063505
O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo. Extra force in f (R) modified theories of gravity. Phys. Rev. D 75, 104016 (2007).
https://doi.org/10.1103/PhysRevD.75.104016
O. Bertolami, J. Paramos, T. Harko, F.S.N. Lobo. Nonminimal curvature-matter couplings in modified gravity. [arXiv:0811.2876 [gr-qc]].
O. Bertolami, F.S.N. Lobo, J. Paramos. Non-minimum coupling of perfect fluids to curvature. Phys. Rev. D 78, 064036 (2008).
https://doi.org/10.1103/PhysRevD.78.064036
O. Bertolami, J. Paramos. Do f (R) theories matter? Phys. Rev. D 77, 084018 (2008).
https://doi.org/10.1103/PhysRevD.77.084018
T. Harko, T.S. Koivisto, F.S.N. Lobo. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A 26, 1467 (2011).
https://doi.org/10.1142/S0217732311035869
T. Harko, F.S.N. Lobo. f (R, Lm) gravity. Eur. Phys. J. C 70, 373 (2010).
https://doi.org/10.1140/epjc/s10052-010-1467-3
G.J. Olmo, D. Rubiera-Garcia. Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B 740, 73 (2015).
https://doi.org/10.1016/j.physletb.2014.11.034
Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi. Further matters in space-time geometry: f (R, T, Rμν Tμν) gravity. Phys. Rev. D 88 (4), 044023 (2013).
https://doi.org/10.1103/PhysRevD.88.044024
T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov. f (R, T) gravity. Phys. Rev. D 84, 024020 (2011).
https://doi.org/10.1103/PhysRevD.84.024020
S.D. Odintsov, D. S'aez-G'omez. f (R, T, Rμν, Tμν) gravity phenomenology and ΛCDM universe. Phys. Lett. B 725, 437 (2013).
https://doi.org/10.1016/j.physletb.2013.07.026
T. Harko, F.S.N. Lobo. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D 86, 124034 (2012).
https://doi.org/10.1103/PhysRevD.86.124034
I. Ayuso, J. Beltran Jimenez, 'A. de la Cruz-Dombriz. Consistency of universally nonminimally coupled f (R, T, Rμν, Tμν) theories. Phys. Rev. D 91 (10), 104003 (2015).
N. Tamanini, T.S. Koivisto. Consistency of nonminimally coupled f (R) gravity. Phys. Rev. D 88 (6), 064052 (2013).
https://doi.org/10.1103/PhysRevD.88.064019
S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Cosmology of hybrid metric-Palatini f (X)-gravity. JCAP 04, 011 (2013).
https://doi.org/10.1088/1475-7516/2013/04/011
G.J. Olmo. The Gravity Lagrangian according to solar system experiments. Phys. Rev. Lett. 95, 261102 (2005).
https://doi.org/10.1103/PhysRevLett.95.261102
G.J. Olmo. Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism. Phys. Rev. D 72, 083505 (2005).
https://doi.org/10.1103/PhysRevD.72.083505
T.S. Koivisto. Cosmology of modified (but second order) gravity. AIP Conf. Proc. 1206, 79 (2010).
https://doi.org/10.1063/1.3292516
T.S. Koivisto. The post-Newtonian limit in C-theories of gravitation. Phys. Rev. D 84, 121502 (2011).
https://doi.org/10.1103/PhysRevD.84.121502
L. Iorio. Gravitational anomalies in the solar system? Int. J. Mod. Phys. D 24 (6), 1530015 (2015).
https://doi.org/10.1142/S0218271815300153
R.P. Woodard. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys. 720, 403 (2007).
https://doi.org/10.1007/978-3-540-71013-4_14
T.S. Koivisto, N. Tamanini. Ghosts in pure and hybrid formalisms of gravity theories: A unified analysis. Phys. Rev. D 87 (10), 104030 (2013).
https://doi.org/10.1103/PhysRevD.87.104030
T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012).
https://doi.org/10.1103/PhysRevLett.108.031101
T. Biswas, T. Koivisto, A. Mazumdar. Nonlocal theories of gravity: The flat space propagator. [arXiv:1302.0532 [gr-qc]].
N. Tamanini, C.G. Boehmer. Generalized hybrid metricPalatini gravity. Phys. Rev. D 87 (8), 084031 (2013).
https://doi.org/10.1103/PhysRevD.87.084031
E.E. Flanagan. Higher order gravity theories and scalar tensor theories. Class. Quant. Grav. 21, 417 (2003).
https://doi.org/10.1088/0264-9381/21/2/006
J.L. Rosa, S. Carloni, J.P.d. Lemos, F.S.N. Lobo. Cosmological solutions in generalized hybrid metric-Palatini gravity. Phys. Rev. D 95 (12), 124035 (2017).
https://doi.org/10.1103/PhysRevD.95.124035
N.A. Lima. Dynamics of linear perturbations in the hybrid metric-Palatini gravity. Phys. Rev. D 89 (8), 083527 (2014).
https://doi.org/10.1103/PhysRevD.89.083527
S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. JCAP 07, 024 (2013).
https://doi.org/10.1088/1475-7516/2013/07/024
S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Galactic rotation curves in hybrid metric-Palatini gravity. Astropart. Phys. 50-52, 65 (2013).
https://doi.org/10.1016/j.astropartphys.2013.09.005
P. M. S'a. Unified description of dark energy and dark matter within the generalized hybrid metric-Palatini theory of gravity. Universe 6 (6), 78 (2020).
https://doi.org/10.3390/universe6060078
S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D 86, 127504 (2012).
https://doi.org/10.1103/PhysRevD.86.127504
J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo. Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere. Phys. Rev. D 98 (6), 064054 (2018).
https://doi.org/10.1103/PhysRevD.98.064054
M. Kord Zangeneh, F.S.N. Lobo. Dynamic wormhole geometries in hybrid metric-Palatini gravity. Eur. Phys. J. C 81 (4), 285 (2021).
https://doi.org/10.1140/epjc/s10052-021-09059-y
J.L. Rosa. Double gravitational layer traversable wormholes in hybrid metric-Palatini gravity. Phys. Rev. D 104 (6), 064002 (2021).
https://doi.org/10.1103/PhysRevD.104.064002
B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak. Hybrid metric-Palatini stars. Phys. Rev. D 95 (4), 044031 (2017).
https://doi.org/10.1103/PhysRevD.95.044031
K.A. Bronnikov, S.V. Bolokhov, M.V. Skvortsova. Spherically symmetric space-times in generalized hybrid metricPalatini gravity. Grav. Cosmol. 27 (4), 358 (2021).
https://doi.org/10.1134/S0202289321040046
T. Harko, F.S.N. Lobo, H.M.R. da Silva. Cosmic stringlike objects in hybrid metric-Palatini gravity. Phys. Rev. D 101 (12), 124050 (2020).
https://doi.org/10.1103/PhysRevD.101.124050
H.M.R. da Silva, T. Harko, F.S.N. Lobo, J.L. Rosa. Cosmic strings in generalized hybrid metric-Palatini gravity. Phys. Rev. D 104 (12), 124056 (2021).
https://doi.org/10.1103/PhysRevD.104.124056
H.M.R. da Silva, T. Harko, F.S.N. Lobo, J.L. Rosa. U(1) local strings in generalized hybrid metric-Palatini gravity. [arXiv:2112.05272 [gr-qc]].
T. Harko, F.S.N. Lobo, H.M.R. d. Silva. U(1) local strings in hybrid metric-Palatini gravity. [arXiv:2112.04496 [gr-qc]].
J.L. Rosa, D.A. Ferreira, D. Bazeia, F.S.N. Lobo. Thick brane structures in generalized hybrid metric-Palatini gravity. Eur. Phys. J. C 81 (1), 20 (2021).
https://doi.org/10.1140/epjc/s10052-021-08840-3
B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak. Spherically symmetric static vacuum solutions in hybrid metric-Palatini gravity. Phys. Rev. D 99 (6), 064028 (2019).
https://doi.org/10.1103/PhysRevD.99.064028
N. Avdeev, P. Dyadina, S. Labazova. Test of hybrid metric-Palatini f (R)-gravity in binary pulsars. J. Exp. Theor. Phys. 131 (4), 537 (2020).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.