Raman Scattering in Glassy Litium Tetraborate Activated with Erbium and Terbium Oxides
DOI:
https://doi.org/10.15407/ujpe69.6.373Keywords:
Raman scattering, lithium tetraborate, erbium oxide, terbium oxide, structural complexes, mixed vibrations, phononsAbstract
Spectra of Raman scattering in glassy lithium tetraborate activated with erbium and terbium oxides to various concentrations have been studied. It is found that the main components of the observed structures in the Raman scattering spectra of Li2B4O7 : Er2O3 and Li2B4O7 : Tb2O3 glasses obtained in the framework of a medium-order approximation are induced by mixed vibrations of complicated boron/lithium/erbium/terbium-oxygen structural complexes.
References
I. Kindrat, B. Padlyak, R. Lisiecki, V. Adamiv. Spectroscopic and luminescent properties of the lithium tetraborate glass co-doped with Nd and Ag. J. Alloy. Compd. 853, 157321 (2021).
https://doi.org/10.1016/j.jallcom.2020.157321
I. Kindrat, B. Padlyak, R. Lisiecki, V. Adamiv. Spectroscopic and luminescent properties of the lithium tetraborate glass co-doped with Tm and Ag. J. Luminesc. 25, 117357 (2020).
https://doi.org/10.1016/j.jlumin.2020.117357
I. Kindrat, B. Padlyak, B. Kuklinski, A. Drzewiecki, V.T. Adamiv. Effect of silver co-doping on enhancement of the Sm3+ luminescence in lithium tetraborate glass. J. Luminesc. 213, 290 (2019).
https://doi.org/10.1016/j.jlumin.2019.05.045
I. Kindrat, B. Padlyak, R. Lisiecki, A. Drzewiecki, V.T. Adamiv. Effect of silver co-doping on luminescence of the Pr3+-doped lithium tetraborate glass. J. Luminesc. 241, 118468 (2022).
https://doi.org/10.1016/j.jlumin.2021.118468
M.A. Vallejo, S. Romero-Servin, M. Alvarez, J. Angel, C. Gomez-Solis, L. Alvarez-Valtierra, M.A. Sosa. Enhancing the nonlinear optical properties of lithium tetraborate glass using rare earth elements and silver nanoparticles. Nano 5, 2050064 (2020).
https://doi.org/10.1142/S1793292020500642
J. Krogh-Moe. Refinement of the crystal structure of lithium diborate Li2O-2B2O3. Acta Cryst. B 24, 1791 (1968).
https://doi.org/10.1107/S0567740868001913
A. Senyshyn, B. Schwarz, T. Lorenz, V.T. Adamiv, Ya.V. Burak, J. Banys, R. Grigalaitis, L. Vasylechko, H. Ehrenberg, H. Fuess. Low-temperature crystal structure, specific heat, and dielectric properties of lithium tetraborate Li2B4O7. J. Appl. Phys. 108, 093524 (2010).
https://doi.org/10.1063/1.3504244
A.K. Yadav, P. Singh. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583 (2015).
https://doi.org/10.1039/C5RA13043C
L. Chervinka. Medium-range order in amorphous materials. J. Non-Cryst. Sol. 106, 291 (1988).
https://doi.org/10.1016/0022-3093(88)90277-3
K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley and Sons, 1991) [ISBN: 978-0-471-74493-2].
J. Lor¨osch, M. Couzi, J. Pelous, R. Vacher, A. Levasseur. Brillouin and Raman scattering study of borate glasses. J. Non-Cryst. Sol. 69, 1 (1984).
https://doi.org/10.1016/0022-3093(84)90119-4
R. Shuker, R.W. Gammon. Raman-scattering selectionrule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 25, 2225 (1970).
https://doi.org/10.1103/PhysRevLett.25.222
N. Imanaka, T. Masui, W.Y. Kim. First electrochemical growth of Tb16O30 single crystal. J. Sol. St. Chem. 177, 38392 (2004).
https://doi.org/10.1016/j.jssc.2004.07.015
J. Cui, G.A. Hope. Raman and fluorescence spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. J. Spectrosc. 2015, 8 (2015).
J. Ibanez, O. Blazquez, S. Hernandez, B. Garrido, P. Rodriguez-Hernandez, A. Munoz, M. Velazquez, P. Veber, F.J. Manjon. Lattice dynamics study of cubic Tb2O3. J. Raman Spectrosc. 49(12), 2021 (2018).
https://doi.org/10.1002/jrs.5488
P.S. Danilyuk, P.P. Puga, A.I. Gomonai, V.N. Krasylynec, P.N. Volovich, V.M. Rizak. X-ray luminescence and spectroscopic characteristics of Er3+ ions in a glassy lithium tetraborate matrix. Opt. Spectrosc. 118, 924 (2015).
https://doi.org/10.1134/S0030400X15060089
T. Lopez, E. Haro-Poniatowski, P. Bosh, M. Asomoza, R. Gomez, M. Massot, M. Balkanski. Spectroscopic characterization of lithium doped borate glasses. J. Sol-Gel Sci. Technol. 2, 8914 (1994).
https://doi.org/10.1007/BF00486371
Y. Li, G. Lan. Pressure-induced amorphization study of lithium diborate. J. Phys. Chem. Solids 57, 887 (1996).
https://doi.org/10.1016/S0022-3697(96)00081-9
Yu.K. Voronko, A.A. Sobol, V.E. Shukshin. Raman spectroscopy study of the phase transformations of LiB3O5 and Li2B4O7 during heating and melting. Inorg. Mater. 49, 923 (2013).
https://doi.org/10.1134/S0020168513090203
F.H. El Batal, A.A. El Kheshen, M.A. Azooz, S.M. AboNaf. Gamma ray interaction with lithium diborate glasses containing transition metals ions. Opt. Mater. 30, 881 (2008).
https://doi.org/10.1016/j.optmat.2007.03.010
M. Massot, E. Haro, M. Oueslati, M. Balkanski, A. Levasseur, M. Menetrier. Structural investigation of doped lithium borate glasses. Mater. Sci. Eng. B 3, 57 (1989).
https://doi.org/10.1016/0921-5107(89)90178-5
P.P. Puga, P.S. Danyliuk, G.V. Rizak, A.I. Gomonai, I.M. Rizak, V.M. Rizak, G.D. Puga, L. Kvetkova, M.M. Byrov, I.I. Chychura, V.N. Zhiharev. Raman scattering in glassy Li2B4O7. J. Chem. Techn. 26, 30 (2018).
https://doi.org/10.15421/0817260204
V.T. Adamiv, T. Berko, A.V. Kityk, Ya.V. Burak, V.I. Dzhala, V.I. Dovgij, I.E. Moroz. On the phonon spectra of borate single crystals. Ukr. J. Phys. 37, 368 (1992).
T.D. Kelly, J.C. Petrosky, J.W. McClory, V.T. Adamiv, Ya.V. Burak, B.V. Padlyak, I.M. Teslyuk, N. Lu, L. Wang, W-N. Mei, P.A. Dowben. Rare earth dopant (Nd, Gd, Dy, and Er) hybridization in lithium tetraborate. Front. Phys. Ser. Condens. Matter Phys. 2, N 31, 1 (2014).
https://doi.org/10.3389/fphy.2014.00031
G.L. Paul, W. Taylor. Raman spectrum of Li2B4O7. J. Phys. C 15, 1753 (1982).
https://doi.org/10.1088/0022-3719/15/8/021
S. Furusawa, S. Tange, Y. Ishibashi, K. Miwa. Raman scattering study of lithium diborate (Li2B4O7) single crystal. J. Phys. Soc. Japan 59, 825 (1990).
https://doi.org/10.1143/JPSJ.59.1825
Ya.V. Burak, V.I. Dovgij, A.V. Kityk. Longitudinaltransverse splitting of phonon modes in the Li2B4O7 crystals. J. Appl. Spectrosc. 52, 126 (1990).
https://doi.org/10.1007/BF00664791
T. Berko, V.I. Dovgij, A.V. Kityk, Ya.V. Burak, V.I. Dzhala, I.E. Moroz. Raman spectra of lithium tetraborate monocrystals. Ukr. J. Phys. 38, 39 (1993).
Q. Hu, T. Wang, Y. Chu, X. Wang, Y. Du, J. Ren, X. Yang, G. Yang, X. Kong, P. Wang. Mixed alkali effects in Er3+ -doped borate glasses: Influence on physical, mechanical, and photoluminescence properties. J. Am. Ceram. Soc. 102, 4562 (2019).
https://doi.org/10.1111/jace.16331
G. Chandrashekaraiah, A. Jayasheelan, M. Gowri, N.S. Reddy, C.N. Reddy. Correlation between non-linear optical parameter and structure of Li2B4O7 glasses doped with Er3+ ions. J. Non-Cryst. Solids 531, 119843 (2020).
https://doi.org/10.1016/j.jnoncrysol.2019.119843
A.E. Elalaoui, A. Maillard, M.D. Fontana. Raman scattering and non-linear optical properties in Li2B4O7. J. Phys.: Cond. Matter 17, 7441 (2005).
https://doi.org/10.1088/0953-8984/17/46/027
A.V. Vdovin, V.N. Moiseenko, V.S. Gorelik, Ya. Burak. Vibrational spectrum of Li2B4O7 crystals. Phys. Solid State 43, 1648 (2001).
https://doi.org/10.1134/1.1402218
V.N. Moiseenko, A.V. Vdovin, Ya. Burak. Efficiency of the Raman scattering in the Li2B4O7 crystals. Opt. Spectrosc. 81(4), 620 (1996).
N.T. McDevitt, A.D. Davidson. Infrared lattice spectra of cubic rare earth oxides in the region 700 to 50 cm−1. J. Opt. Soc. Am. 56, 636 (1966).
https://doi.org/10.1364/JOSA.56.000636
G. Schaack, J.A. Koningstein. Phonon and electronic Raman spectra of cubic rare-earth oxides and isomorphous yttrium oxide. J. Opt. Soc. Am. 60, 1110 (1970).
https://doi.org/10.1364/JOSA.60.001110
R. Tomar, P. Kumar, A. Kumar, A. Kumar, P. Kumar, R.P. Pant, K. Asokan. Investigations on structural and magnetic properties of Mn doped Er(2)O(3). Solid State Sciences 67, 8 (2017).
https://doi.org/10.1016/j.solidstatesciences.2017.03.003
A.M. Lejus, D. Michel. Raman spectrum of Er(2)O(3) sesquioxide. Physica Status Solidi B 84, K105 (1977).
https://doi.org/10.1002/pssb.2220840255
L.A. Tucker, F.J. Carney, P. McMillan, S.H. Lin, L. Eyring. Raman and resonance Raman spectroscopy of selected rare-earth sesquioxides. Appl. Spectrosc. 38, 857 (1984).
https://doi.org/10.1366/0003702844554657
D. Yan, P. Wu, S.P. Zhang, L. Liang, F. Yang, Y.L. Pei, S. Chen. Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 114, 193502 (2013).
https://doi.org/10.1063/1.4831663
A.N. Lazarev, A.P. Mirgorodsky, I.S. Ignatiev. Vibrational Spectra of Complex Oxides. Silicates and Their Analogues. (Nauka, 1975) (in Russian).
M.V. Abrashev, N.D. Todorov, J. Geshev. Raman spectra of R(2)O(3) (R - rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study. J. Appl. Phys. 116, 103508 (2014).
https://doi.org/10.1063/1.4894775
Ya.V. Burak, V.T. Adamiv, I.M. Teslyuk. To the origin of vibrational modes in Raman spectra of Li2B4O7 single crystals. Func. Mater. 13, 591 (2006).
Ya.V. Burak, I.B. Trach, V.T. Adamiv, I.M. Teslyuk. Isotope effect in the Raman spectra of Li2B4O7 single crystals. Ukr. J. Phys. 47 923 (2002).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.