Physical Principles of a Ferromagnetic Gyroscope with Nanoscale Sensitive Elements

Authors

  • N.M. Chepilko Instutute of Aerospace Technologies, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • S.A. Ponomarenko Instutute of Aerospace Technologies, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.15407/ujpe69.6.395

Keywords:

nanophysics, nanoparticle, ferromagnetic quantum dot, levitation, gyroscope, spin, magneton, angular momentum

Abstract

Physical principles of applying modern nanotechnologies to develop nano-sized and energyefficient sensitive elements for control systems in small satellites have been considered. Of practical interest is the creation of a ferromagnetic gyroscope. As its model, a periodic structure (a pseudocrystal) of coherent monodomain ferromagnetic quantum dots (FQDs) localized in spherical nanocontainers, where they are expected to dwell in the quantum levitation state, is proposed. Owing to the Einstein–de Haas effect, those FQDs would retain their angular momentum over time. To control the pseudocrystal orientation in space, the pseudocrystal is mounted on a movable platform located in an external two-component magnetic field (MF). The static component of the MF is perpendicular to the pseudocrystal base, and the dynamic component is perpendicular to the pseudocrystal lateral side. By analyzing the absorption spectrum of the dynamic MF and its dependence on the pseudocrystal orientation in space, it is possible to calculate the angular coordinates of the new pseudocrystal position, which are determined by the relative orientations of the fixed direction of the FQD’s angular momentum and the vector of the external static MF.

References

O.W. Richardson. A mechanical effect accompanying magnetization. Phys. Rev. Ser. I 26, 248 (1908).

https://doi.org/10.1103/PhysRevSeriesI.26.248

A. Einstein, W.J. de Haas. Experimenteller Nachweis der Ampereschen Molekularstrome Deut. Physik. Gesellsch. Verhandl. 17, 152 (1915).

A. Einstein, W.J. de Haas. Experimental proof of the existence of Ampere's molecular currents. Koninkl. Akad. Wetensch. Amsterdam 18, 696 (1915).

L.A. Levin. On the possibility of creating a cryogenic ferromagnetic gyroscope. Zh. Tekhn. Fiz. 66, No. 4, 192 (1996) (in Russian).

P. Fadeev, Ch. Timberlake, Tao Wang, A. Vinante, Y.B. Band, D. Budker, A.O. Sushkov, H. Ulbricht, D.F. Jackson Kimba. Ferromagnetic gyroscopes for tests of fundamental physics. arXiv:2010.08731v1 [quant-ph].

S.J. Barnett. On magnetization by angular acceleration. Science 30, 413 (1908).

https://doi.org/10.1126/science.30.769.413

S.J. Barnett. Magnetization by rotation. Phys. Rev. 6, 239 (1915).

https://doi.org/10.1103/PhysRev.6.239

S.J. Barnett. Gyromagnetic and electron-inertia effects. Rev. Mod. Phys. 7, 129 (1935).

https://doi.org/10.1103/RevModPhys.7.129

L.D. Landau, E.M. Lifshits, Electrodynamics of Continuous Media (Pergamon Press, 1984).

https://doi.org/10.1016/B978-0-08-030275-1.50007-2

S.V. Vonsovsky. Magnetism (Wiley, 1974).

S.P. Gubin, Yu.A. Koksharov, G.B. Khomutov, G.Yu. Yurkov. Magnetic nanoparticles: Methods of preparation, structure and properties. Adv. Chem. 74, 6 (2005).

https://doi.org/10.1070/RC2005v074n06ABEH000897

S.V. Terekhov, V.N. Varyukhin. Physics of Nanoobjects (DonNU, 2013) (in Russian).

Yu.M. Poplavko, O.V. Borysov, I.P. Golubeva, Yu.V. Didenko. Magnets in Electronics (KPI, 2021) (in Ukrainian).

O.I. Tovstolytkin, M.O. Borovyi, V.V. Kurylyuk, Yu.A. Kunitskyi. Physical Foundations of Spintronics (ToV "Nilan-LTD", 2014) (in Ukrainian).

S.A. Sokolsky. The influence of interparticle interaction in an ensemble of stationary superparamagnetic ferroparticles on the statistical, magnetic and thermodynamic properties of the system. Comp. Cont. Mech. 14, 264 (2021) (in Ukrainian).

https://doi.org/10.7242/1999-6691/2021.14.3.22

C. Zhang, H. Yuan, Z. Tang, W. Quan, J.C. Fang. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory. Appl. Phys. Rev. 3, 041305 (2016).

https://doi.org/10.1063/1.4972187

J. Gieseler, A. Kabcenell, E. Rosenfeld, J.D. Schaefer, A. Sara, M.J.A. Schuetz, C. Gonzalez-Ballestero, C.C. Rusconi, O. Romero-Isart, M.D. Lukin. Single-spin magnetomechanics with levitated micromagnets. Phys. Rev. Lett. 124, 163604 (2020).

https://doi.org/10.1103/PhysRevLett.124.163604

A. Vinante, P. Falferi, G. Gasbarri, A. Setter, C. Timberlake, H. Ulbricht. Ultralow mechanical damping with Meissner-levitated ferromagnetic microparticles. Phys. Rev. Appl. 13, 064027 (2020).

https://doi.org/10.1103/PhysRevApplied.13.064027

P. Huillery, T. Delord, L. Nicolas, M. Van Den Bossche, M. Perdriat, G. Hetet. Spin mechanics with levitating ferromagnetic particles. Phys. Rev. B 101, 134415 (2020).

https://doi.org/10.1103/PhysRevB.101.134415

L.D. Landau, E.M. Lifshitz. Quantum Mechanics. NonRelativistic Theory (Pergamon Press, 1981).

A.G. Gurevich. Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, 1973) (in Russian).

V.G. Shavrov, V.I. Shcheglov. Feromagnetic Resonance under Conditions of Orientational Transition (Nauka, 2018) (in Russian).

J. Smit, H.P.J. Wijn. Advances in Electronics and Electron Physics VI (Academic Press, 1954).

J. Smit, H.G. Beljers. Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal. Philips Res. Rep. 10, 113 (1955).

H. Suhl. Ferromagnetic resonance in nickel ferrite between one and two kilomegacycles. Phys. Rev. 97, 555 (1955).

https://doi.org/10.1103/PhysRev.97.555.2

G.V. Skrotskii, T.V. Kurbatov. Phenomenological theory of ferromagnetic resonance. In Ferromagnetic Resonance. Edited by S.V. Vonsovskii (Nauka, 1961) (in Russian).

J. Campe de Ferrier, R. Campbell, G. Petiot, T. Vogel. Functions of Mathematical Physics: Reference Guide. Translation from French by N.Ya. Vilenkin (Fizmatgiz, 1963) (in Russian).

Published

2024-07-25

How to Cite

Chepilko, N., & Ponomarenko, S. (2024). Physical Principles of a Ferromagnetic Gyroscope with Nanoscale Sensitive Elements. Ukrainian Journal of Physics, 69(6), 395. https://doi.org/10.15407/ujpe69.6.395

Issue

Section

General physics