Recombination and Trapping of Excess Carriers in n-InSb

Authors

  • V.V. Tetyorkin V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A.I. Tkachuk Volodymyr Vynnychenko Central Ukrainian State University
  • I.G. Lutsyshyn V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe69.1.45

Keywords:

InSb, lifetime, recombination and trapping effects, infrared photodiodes

Abstract

The effect of trapping on the transient and steady-state lifetimes of excess carriers is investigated in InSb of n-type conductivity. Photoconductive decay and direct current measurements are used to characterize the starting material and infrared photodiodes. The large difference between the transient and steady-state lifetimes is explained by the trapping of minority carriers at the acceptor centers within the two-level recombination model. The recombination parameters of the traps are estimated.

References

V.C. Lopes, A.J. Syllaios, M.C. Chen. Minority carrier lifetime in mercury cadmium telluride. Semicond. Sci. Technol. 8, 824 (1993).

https://doi.org/10.1088/0268-1242/8/6S/005

A. Rogalski. Infrared Detectors, 2nd edn. (Boca Raton, CRC Press, Taylor & Francis Group, 2011).

R.A. Laff, H.Y. Fan. Carrier lifetime in indium antimonide. Phys. Rev. 121, 53 (1961).

https://doi.org/10.1103/PhysRev.121.53

J.E.L. Hollis, C. Choo, E.L. Heasell. Recombination centers in InSb. J.Appl. Phys. 35, 1626 (1967).

https://doi.org/10.1063/1.1709734

Y. Tokumaru, H. Okushi, H. Fujisada. Deep levels in n-type undoped and Te-d oped InSb crystals. Jap. J. Appl. Phys. 26, 499 (1987).

https://doi.org/10.1143/JJAP.26.499

K. Tsukioka, H. Miyazawa. DLTS studies on InSb p-n+ diodes. Jap. J. Appl. Phys. 21, L526 (1982).

https://doi.org/10.1143/JJAP.21.L526

V.V. Tetyorkin, A.V. Sukach, A.I. Tkachuk. Infrared photodiodes on II-VI and III-V narrow gap semiconductors. In: Photodiodes - from Fundamentals to Applications. Edited by Prof. Ilgu Yun (InTechopen, 2012).

https://doi.org/10.5772/52930

R. Fastow, D. Goren, Y. Nemirovsky. Shockley-read recombination and trapping in p-type HgCdTe. Appl. Phys. Lett. 68, 3405 (1990).

https://doi.org/10.1063/1.346346

Y. Nemirovsky, R. Fastov, A. Adar, A. Unikovsky. Trapping effects in HgCdTe. J. Vac. Sci. Technol. B 9, 1829 (1991).

https://doi.org/10.1116/1.585808

A.V. Sukach, V.V. Tetyorkin, A.I. Tkachuk. Electrical properties of InSb p-n junctions prepared by diffusion method. SPQE 19, 295 (2016).

https://doi.org/10.15407/spqeo19.03.295

W. Shockley, W.T. Read Jr. Statistics of the recombination of holes and electrons. Phys. Rev. 87, 835 (1952).

https://doi.org/10.1103/PhysRev.87.835

D.J. Sandifford. Carrier lifetime in semiconductors for transient conditions. Phys. Rev. 105, 524 (1957).

https://doi.org/10.1103/PhysRev.105.524

G.K. Wertheim. Transient recombination of excess carriers in semiconductors. Phys. Rev. 109, 1086 (1958).

https://doi.org/10.1103/PhysRev.109.1086

J.S. Blakmore. Semiconductor Statistics (Pergamon Press, 1962).

J. Reichman. Minority carrier lifetime of HgCdTe from photoconductivity decay method. Appl. Phys. Lett. 59, 1221 (1991).

https://doi.org/10.1063/1.105509

K. Heyke, G. Lautz , H. Schumny. Current noise in n-type InSb. Phys. Stat. Sol. (a) 1970. 1, (1970).

https://doi.org/10.1002/pssa.19700010311

M.A. Sipovskaya, Yu.S. Smetannikova. Dependence of the lifetime of current carriers in n-InSb on the electron density. Sov. Phys. Semicond. 18, 356 (1984) (In Russia).

A. Schenk, U. Krumbein. Coupled defect-level recombination: theory and application to anomalous diode characteristics. J. Appl. Phys. 78, 3185 (1995).

https://doi.org/10.1063/1.360007

D.K. Schroder. Semiconductor Material and Device Characterization (Wiley, 2006) [ISBN: 978-0-471-73906-7].

https://doi.org/10.1002/0471749095

P.J. Drummond, D. Bhatia, A. Kshirsagar, S. Ramani, J. Ruzyllo. Studies of photoconductance decay method for characterization of near-surface electrical properties of semiconductors. Thin Solid Films 519, 7621 (2011).

https://doi.org/10.1016/j.tsf.2011.04.212

S.M. Sze, Kwok K. Ng. Physics of Semiconductor Devices, 3d. ed. (Wiley, 2007).

O. Madelung. Semiconductors - Basic Data (Springer, 1996).

https://doi.org/10.1007/978-3-642-97675-9

O. Madelung, U. R¨ossler, M. Schulz. Landolt-B¨ornstein - Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Vol. 41A2b. Impurities and Defects in Group IV Elements, IV-IV and III-V Compounds. Part b: Group IV-IV and III-V Compounds (Springer, 2003).

https://doi.org/10.1007/b83098

C. Littler. Characterization of impurities and defects in InSb and HgCdTe using novel magneto-optical techniques. Proc. SPIE 2021, 184 (1993).

https://doi.org/10.1117/12.164943

A. Chroneos, H.A. Tahini, U. Schwingenschl¨ogl, R.W. Grimes. Antisites in III-V semiconductors: Density functional theory calculations. J. Appl. Phys. 116, 023505 (2014).

https://doi.org/10.1063/1.4887135

H.A. Tahini, A. Chroneos, S.T. Murphy, U. Schwingenschl¨ogl, R.W. Grimes. Vacancies and defect levels in III-V semiconductors. J. Appl. Phys. 114, 063517 (2013).

https://doi.org/10.1063/1.4818484

A. H¨oglund, C.W.M. Castleton, M. G¨othelid, B. Johansson, S. Mirbt. Point defects on the (110) surfaces of InP, InAs, and InSb: A comparison with bulk. Phys. Rev. B 74, 075332 (2006).

https://doi.org/10.1103/PhysRevB.74.075332

S.V. Stariy, A.V. Sukach, V.V. Tetyorkin, V.O. Yukhymchuk, T.R. Stara. Effect of thermal annealing on electrical and photoelectrical properties of n-InSb. SPQEO 20, 105 (2017).

https://doi.org/10.15407/spqeo20.01.105

J.H. You, H.T. Johnson. Effect of dislocations on electrical and optical properties in GaAs and GaN. Solid State Phys. 61, 143 (2009).

https://doi.org/10.1016/S0081-1947(09)00003-4

Downloads

Published

2024-02-06

How to Cite

Tetyorkin, V., Tkachuk, A., & Lutsyshyn, I. (2024). Recombination and Trapping of Excess Carriers in n-InSb. Ukrainian Journal of Physics, 69(1), 45. https://doi.org/10.15407/ujpe69.1.45

Issue

Section

Semiconductors and dielectrics