Anisotropic Darcy–Brinkman Magnetic Fluid Convection under the Influence of a Time-Dependent Sinusoidal Magnetic Field

Authors

  • C. Balaji Department of Mathematics, CMR Institute of Technology
  • S. Maruthamanikandan Department of Mathematics, School of Engineering, Presidency University
  • C. Rudresha Department of Engineering Mathematics, HKBK College of Engineering
  • V. Vidya Shree Department of Mathematics, SJB Institute of Technology

DOI:

https://doi.org/10.15407/ujpe68.11.730

Keywords:

magnetic field modulation, stability, ferromagnetic fluid, perturbation method, porous medium

Abstract

The impact of the sinusoidal mode of a magnetic field involving time fluctuations on the threshold of the ferromagnetic smart liquid convection in a saturated permeable medium is investigated using the regular perturbation technique. The Darcy–Brinkman model with anisotropic permeability is used to describe the flow through porous media. The thermal anisotropy is implemented in the energy equation. The problem might be useful in thermal engineering applications such as dynamic loudspeakers and computer hard discs and in medical applications like the treatment of tumor cells and the cell separation, to name a few. The regular perturbation technique is based on the minimum amplitude of a magnetic field modulation, and the onset criterion is dealt with in terms of a correction in the critical Rayleigh number and wavenumber. The thermal Rayleigh number correction depends on the magnetic field modulation frequency, magnetic force, anisotropies, porosity, and Prandtl number. At moderate values of the magnetic field modulation frequency, the impact of various physical factors is perceived to be noteworthy. The influences of the magnetic mechanism, Prandtl number, porosity parameter, and Brinkman number are shown to augment the destabilizing effect of the magnetic field modulation for moderate values of the frequency of a modulation. However, the destabilizing effect of the magnetic field modulation is diminished due to an increase in the values of the mechanical anisotropy parameter and thermal anisotropy parameter. The study reveals that the effect of the magnetic field modulation could be exploited to control the convective instability in an anisotropic porous medium saturated by a ferromagnetic fluid.

References

J. Popplewell. Technological applications of ferrofluids. Phys. Technol. 15, 3 (1984).

https://doi.org/10.1088/0305-4624/15/3/I04

H.E. Horng, C.Y. Hong, S.Y. Yang, H.C. Yang. Novel properties and applications in magnetic fluids. J. Phys. Chem. Solids. 62, 9 (2001).

https://doi.org/10.1016/S0022-3697(01)00108-1

B.A. Finlayson, Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 4 (1970).

https://doi.org/10.1017/S0022112070000423

K. Gotoh, M. Yamada. Thermal convection in a horizontal layer of magnetic fluids. J. Phys. Soc. Japan. 51, 9 (1982).

https://doi.org/10.1143/JPSJ.51.3042

P.J. Stiles, F. Lin, P.J. Blennerhassett. Heat transfer through weakly magnetized ferrofluids. J. Colloid Interface Sci. 151, 1 (1992).

https://doi.org/10.1016/0021-9797(92)90240-M

M.I. Shliomis, K.I. Morozov. Negative viscosity of ferrofluid under alternating magnetic field. Phys. Fluids. 6, 8 (1994).

https://doi.org/10.1063/1.868108

S. Maruthamanikandan. Effect of radiation on Rayleigh-B'enard convection in ferromagnetic fluids. Int. J. Appl. Mech. Eng. 8, 3 (2003).

S. Saravanan, H. Yamaguchi. Onset of centrifugal convection in a magnetic-fluid-saturated porous medium.Phys. Fluids. 17, 8 (2005).

https://doi.org/10.1063/1.1999547

S. Mathew, S. Maruthamanikandan. Darcy-Brinkman ferroconvection with temperature dependent viscosity. J. Phys. Conf. Ser. 1139, (2018).

https://doi.org/10.1088/1742-6596/1139/1/012023

V. Vidya Shree, C. Rudresha, C. Balaji, S. Maruthamanikandan. Effect of MFD viscosity on ferroconvection in a fluid saturated porous medium with variable gravity. J. Mines Met. Fuels. 70, 3A (2022).

https://doi.org/10.18311/jmmf/2022/30675

V. Vidya Shree, C. Rudresha, C. Balaji, S. Maruthamanikandan. Effect of Magnetic field dependent viscosity on Darcy-Brinkman ferroconvection with second sound. East Eur. J. Phys. 4, (2022).

S. Aniss, M. Belhaq, M. Souhar. Effects of a magnetic modulation on the stability of a magnetic liquid layer heated from above. J. Heat Transfer. 123, 3 (2001).

https://doi.org/10.1115/1.1370501

P.N. Kaloni, J.X. Lou. Convective instability of magnetic fluids under alternating magnetic fields. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 71, 6 (2005).

https://doi.org/10.1103/PhysRevE.71.066311

P. Matura, M. Lucke. Thermomagnetic convection in a ferrofluid layer exposed to a time-periodic magnetic field. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 80, 2 (2009).

https://doi.org/10.1103/PhysRevE.80.026314

H. Engler, S. Odenbach. Thermomagnetic convection in magnetic fluids influenced by a time-modulated magnetic field. Proc. Appl. Math. Mech. 8, 1 (2008).

https://doi.org/10.1002/pamm.200810951

C. Balaji, C. Rudresha, V. Vidya Shree, S. Maruthamanikandan. Ferroconvection in a sparsely distributed porous medium with time-dependent sinusoidal magnetic field. J. Mines Met. Fuels. 70, 3A (2022).

https://doi.org/10.18311/jmmf/2022/30664

C. Balaji, C. Rudresha, V. Vidya Shree, S. Maruthamanikandan. Ferrohydrodynamic instability of a couple stress magnetic fluid layer under the influence of time-dependent sinusoidal magnetic field. Iraqi J. Appl. Phys. 8, 4 (2022).

C.W. Horton, F.T. Rogers. Convection currents in a porous medium. J. Appl. Phy. 367, 16 (1945).

https://doi.org/10.1063/1.1707601

E. Lapwood. Convection of a fluid in a porous medium. Mathematical Proceedings of the Cambridge Philosophical Society 44, 4 (1948).

https://doi.org/10.1017/S030500410002452X

D.A. Nield, A. Bejan. Convection in Porous Media (Springer, 2006).

K. Vafai. Handbook of Porous Media (Crc Press, 2015).

https://doi.org/10.1201/b18614

Yellamma, N. Manjunatha U. Ramalingam, B. Almarri, R. Sumithra, A.M. Elshenhab. The impact of heat source and temperature gradient on Brinkman-B'enard triplediffusive magneto-marangoni convection in a two-layer system. Symmetry. 15, 3 (2023).

https://doi.org/10.3390/sym15030644

P.A. Tyvand. Thermohaline instability in anisotropie porous media. Water Resour. Res. 16, 2 (1980).

https://doi.org/10.1029/WR016i002p00325

L. Storesletten. Natural convection in a horizontal porous layer with anisotropic thermal diffusivity. Transp. Porous Media. 12, 1 (1993).

https://doi.org/10.1007/BF00616359

A. Nakayama, F. Kuwahara, T. Umemoto, T. Hayashi. Heat and fluid flow within an anisotropic porous medium. ASME. J. Heat Transf 4 (2002).

https://doi.org/10.1115/1.1481355

M.S. Malashetty, D. Basavaraja. Rayleigh-B'enard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium. Heat Mass Transf. 38, 7 (2002),

https://doi.org/10.1007/s002310100245

S. Govender. On the effect of anisotropy on the stability of convection in rotating porous media. Transp. Porous Media. 64, 3 (2006).

https://doi.org/10.1007/s11242-005-5479-7

S. Saravanan, A. Purusothaman. Floquet instability of a gravity modulated Rayleigh-B'enard problem in an anisotropic porous medium. Int. J. Therm. Sci. 48, 11 (2009).

https://doi.org/10.1016/j.ijthermalsci.2009.04.001

S.N. Gaikwad, M.S. Malashetty, K.R. Prasad. Linear and non-linear double diffusive convection in a fluidsaturated anisotropic porous layer with cross-diffusion effects. Transp. Porous Media. 80, 3 (2009).

https://doi.org/10.1007/s11242-009-9377-2

N.M. Thomas, S. Maruthamanikandan. Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman layer of porous medium. J. Phys. Conf. Ser. 1139, (2018).

https://doi.org/10.1088/1742-6596/1139/1/012022

A. Mahajan, H. Parashar. Linear and weakly nonlinear stability analysis on a rotating anisotropic ferrofluid layer. Phys. Fluids. 32, 2 (2020).

https://doi.org/10.1063/1.5133102

C. Rudresha, C. Balaji, V. Vidya Shree, S. Maruthamanikandan. Effect of electric field modulation on the onset of electroconvection in a dielectric fluid anisotropic porous layer. J. Comput. Appl. Mech. 53, 4 (2022).

https://doi.org/10.26565/2312-4334-2022-4-09

G. Yeliyur Honnappa, N. Manjunatha, U. Ramalingam, B. Almarri, A.M. Elshenhab, H. Nagarathnamma. Darcy-Brinkman double diffusive convection in an anisotropic porous layer with gravity fluctuation and throughflow. Mathematics. 11, 6 (2023).

https://doi.org/10.3390/math11061287

H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion. 1, 1 (1949).

https://doi.org/10.1007/BF02120313

J.L. Neuringer, R.E. Rosensweig. Ferrohydrodynamics. Phys. Fluids. 7, 12 (1964).

https://doi.org/10.1063/1.1711103

L.D. Landau, E.M. Lifshits. Electrodynamics of continuous media (Pergamon Press, 1960) [ISBN 978-0-08-030275-1].

G. Venezian. Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35, 2 (1969).

https://doi.org/10.1017/S0022112069001091

M.S. Malashetty, V. Padmavathi. Effect of gravity modulation on the onset of convection in a fluid and porous layer. Int. J. Eng. Sci. 35, 9 (1997).

https://doi.org/10.1016/S0020-7225(97)80002-X

S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability (Int. Ser. Monogr. Phys., 1961).

S.N. Gaikwad, I. Begum. Effect of gravity modulation on the onset of thermal convection in rotating viscoelastic fluid and porous layer. Int. J. Fluid Mech. Res. 39, 6 (2012).

https://doi.org/10.1615/InterJFluidMechRes.v39.i6.50

S. Maruthamanikandan, N.M. Thomas, S. Mathew. B'enard-Taylor ferroconvection with time-dependent sinusoidal boundary temperatures. J. Phys. Conf. Ser. 1850, (2021).

https://doi.org/10.1088/1742-6596/1850/1/012061

Downloads

Published

2023-12-18

How to Cite

Balaji, C., Maruthamanikandan, S., Rudresha, C., & Vidya Shree, V. (2023). Anisotropic Darcy–Brinkman Magnetic Fluid Convection under the Influence of a Time-Dependent Sinusoidal Magnetic Field. Ukrainian Journal of Physics, 68(11), 730. https://doi.org/10.15407/ujpe68.11.730

Issue

Section

General physics