Raman Scattering Spectra and DFT Computational Analyzes of Intermolecular Interactions in Trifluoroacetic and Its Solutions
DOI:
https://doi.org/10.15407/ujpe68.4.246Keywords:
Raman spectra, trifluoroacetic, structure of hydrogen bond, DFT calculationsAbstract
In this work, the mechanisms of molecular clusters formation in liquid trifluoroacetic acid were studied using Raman scattering spectra in different solutions. The polarized components of Raman scattering spectra corresponding of the C=O, O–H stretching bands of pure trifluoroacetic acid consist of three broad bands at 1734, 1754, and 1800 cm−1 with different depolarization ratios. When the acid is strongly dissolved in acetonitrile, the 1800 cm−1 spectral band belonging to the C=O band remains. The intermolecular interactions in the formation of trifluoroacetic acid monomer, dimer, and trimer, as well as clusters with water [CF3COOH + (H2O)n, n = 1–7] and acetonitrile [CF3COOH + (CH3CN)n, n = 1–2] molecules, were analysed using the density functional theory (DFT) method.
References
N. Nishi, T. Nakabayashi, K. Kosugi. Liquid structure of acetic acid studied by Raman spectroscopy and Ab initio molecular orbital calculations. J. Phys. Chem. A 103 (50), (1999).
https://doi.org/10.1021/jp991501d
J. Rezac, P. Hobza. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 8, 141 (2012).
https://doi.org/10.1021/ct200751e
V.D. Maiorov, G.I. Voloshenko, I.S. Kislina. Composition and structure of complexes formed in aqueous solutions of trifluoroacetic acid according to IR spectroscopy data. Russ. J. Phys. Chem. 12, 185 (2018).
https://doi.org/10.1134/S1990793118020197
Ch.E. Wujcik, D. Zehavi, J.N. Seiber. Trifluoroacetic acid levels in 1994-1996 fog, rain, snow and surface waters from California and Nevada. Chemosphere 36, 1233 (1998).
https://doi.org/10.1016/S0045-6535(97)10044-3
S. Kutsuna, H. Hori. Experimental determination of Henry's law constants of trifluoroacetic acid at 278-298 K. Atmospheric Environment 42, 1399 (2008).
https://doi.org/10.1016/j.atmosenv.2007.11.009
V.D. Maiorov, I.S. Kislina, E.G. Tarakanova. Structure of complexes in the H2SO4-2-pyrrolidone system as determined by IR-spectroscopy and quantum-chemical calculations. Russ. J. Phys. Chem. B 11, 37 (2017).
https://doi.org/10.1134/S1990793117010080
E.G. Tarakanova, G.V. Yukhnevich. Structure of molecular complexes formed in aqueous solutions of trifluoroacetic acid. J. Struct. Chem. 55, 1409 (2014).
https://doi.org/10.1134/S0022476614080058
R.E. Asfin. IR spectra of hydrogen-bonded complexes of trifluoroacetic acid with acetone and diethyl ether in the gas phase. Interaction between CH and OH stretching vibrations. J. Phys. Chem. A 123, 3285 (2019).
https://doi.org/10.1021/acs.jpca.8b10215
J. Chocholousova, J. Vacek, P. Hobza. Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations. J. Phys. Chem. A 107, 3086 (2003).
https://doi.org/10.1021/jp027637k
B. Ouyang, T.G. Starkey, B.J. Howard. High-resolution microwave studies of ring-structured complexes between trifluoroacetic acid and water. J. Phys. Chem. A 111, 6165 (2007).
https://doi.org/10.1021/jp071130y
M.W. Hnat, Z. Latajka, Z. Mielke, H. Ratajczak, Theoretical and infrared matrix isolation studies of the CF3COOH-N2 system, J. Mol. Struct. 129, 229 (1985).
https://doi.org/10.1016/0022-2860(85)80166-6
V. Sangeetha, M. Govindarajan, N. Kanagathara, M.K. Marchewka, S. Gunasekaran, G. Anbalagan. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 125, 252 (2014).
https://doi.org/10.1016/j.saa.2014.01.018
A.M. Petrosyan, V.V. Ghazaryan, G. Giester, M. Fleck. Sarcosine sarcosinium trifluoroacetate. J. Mol. Struct. 1115, 117 (2016).
https://doi.org/10.1016/j.molstruc.2016.02.094
V.H. Rodrigues, J.A. Paixao, M.M.R.R. Costa, A. Matos Beja. Sarcosinium trifluoroacetate. Acta Cryst. 56, 1053 (2000).
https://doi.org/10.1107/S010827010000809X
E.L. Valenti, M.B. Paci, C.P. De Pauli, C.E. Giacomelli. Infrared study of trifluoroacetic acid unpurified synthetic peptides in aqueous solution: Trifluoroacetic acid removal and band assignment. Anal. Biochem. 410, 118 (2011).
https://doi.org/10.1016/j.ab.2010.11.006
H. Hushvaktov, A. Jumabaev, I. Doroshenko, A. Absanov. Raman spectra and non-empirical calculations of dimethylformamide molecular clusters structure. Vib. Spectrosc. 117, 103315 (2021).
https://doi.org/10.1016/j.vibspec.2021.103315
H.T. Flakus, B. Hachuia. Effect of the resonance of the C-H and O-H bond stretching vibrations on the ir spectra of the hydrogen bond in formic and acetic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 79, 1276 (2011).
https://doi.org/10.1016/j.saa.2011.04.054
J.W. Keller. The formic acid-trifluoroacetic acid bimolecule. Gas-phase infrared spectrum and computational studies. J. Phys. Chem. A 108, 4610 (2004).
https://doi.org/10.1021/jp049883x
M.D. Hurley, M.P. Andersen, T.J. Wallington, D.A. Ellis, J.W. Martin, S.A. Mabury. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes. J. Phys. Chem. A 108, 615 (2004).
https://doi.org/10.1021/jp036343b
K.A. Meyer, M.A. Suhm, Vibrational exciton coupling in homo and hetero dimers of carboxylic acids studied by linear infrared and Raman jet spectroscopy. J. Chem. Phys. 149, 104307 (2018).
https://doi.org/10.1063/1.5043400
S. Shin, Y. Park, Y. Kim, H. Kang. Dissociation of trifluoroacetic acid in amorphous solid water: Charge-delocalized hydroniums and zundel continuum absorption. J. Phys. Chem. C 121, 12842 (2017).
https://doi.org/10.1021/acs.jpcc.7b03415
T. Takamuku, Y. Kyoshoin, H. Noguchi, Sh. Kusano, T. Yamaguchi. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR. J. Phys. Chem. B 111, 9270 (2007).
https://doi.org/10.1021/jp0724976
I.V. Gerasimov, K.G. Tokhadze. Spectroscopic determination of the energy of complexes of trifluoroacetic acid with proton acceptors in the gas phase. JPS 26, 1068 (1977).
https://doi.org/10.1007/BF01124484
I.V. Gerasimov, A.I. Kulbida, K.G. Tokhadze, V.M. Shraibe. Spectroscopic study of systems with a strong hydrogen bond at high temperatures. JPS 32, 1066 (1980).
https://doi.org/10.1007/BF00604291
D.R. Allan, S.J. Clark. Impeded dimer formation in the high-pressure crystal structure of formic acid. Phys. Rev. Lett. 82, 3464 (1999).
https://doi.org/10.1103/PhysRevLett.82.3464
T. Nakabayashi, N. Nishi. Monomeric and cluster states of acetic acid molecules in solutions: A Raman spectriscopic study. J. Annual Review 66 (2000).
T. Nakabayashi, N. Nishi. States of molecular associates in binary mixtures of acetic acid with aprotic polar solvents: The nature of mixture states at molecular levels. J. Annual Review 106, 61 (2002).
https://doi.org/10.1021/jp012606v
R. Vaidyanathan, S.N.R. Rao, Hydrogen bonded structures in organic amine oxalates. J. Mol. Struct. 608, 123 (2002).
https://doi.org/10.1016/S0022-2860(01)00944-9
G.A. Jeffrey. An Introduction to Hydrogen Bonding (Oxford University Press, 1997).
F.H. Tukhvatullin, U.N. Tashkenbaev, A. Jumaboev, A.G. Murodov, H. Khushvaktov, A. Absanov. Raman spectra and intermolecular interaction in formic acid and its solutions. J. Chem. Phys. 6, 205 (2003).
A.K. Atakhodjaev, F.Kh. Tukhvatullin, G. Muradov, A. Jumabaev, U.N. Tashkenbaev, A.A. Tursunkulov. Raman spectra of trifluoroacetic acid in the liquid state. Optics and Spectroscopy 80, 208 (1996).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al. Gaussian 09, Revision A.02.
A. Jumabaev, U. Holikulov, H. Hushvaktov, N. Issaoui, A. Absanov. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 377, 121552 (2023).
https://doi.org/10.1016/j.molliq.2023.121552
M.Kh. Khodiev, U.A. Holikulov, N. Issaoui, O. Al-Dossary, L.G. Bousiakoug, N.L. Lavrik. Estimation of electrostatic and covalent contributions to the enthalpy of H-bond formation in H-complexes of 1,2,3-benzotriazole with protonacceptor molecules by IR spectroscopy and DFT calculations. J. King Saud Univ. Sci. 35, 3, 102530 (2023).
https://doi.org/10.1016/j.jksus.2022.102530
A. Jumabaev, U. Holikulov, H. Hushvaktov, A. Absanov, L. Bulavin. Interaction of valine with water molecules: Raman and DFT study. Ukr. J. Phys. 67, 602 (2022).
https://doi.org/10.15407/ujpe67.8.602
V.M. Belobrov. Hydrogen Bond (Naukova Dumka, 1991).
M.M. Sushchinsky. Spectra of Raman Scattering of Molecules and Crystals (Nauka, 1969).
G.V. Gusakova, G.S. Denisov, A.L. Smolensky. Spectroscopic determination of the energy of complexes of isobutyric acid with piperidine. JPS 860 (1971) [in Russian].
M.O. Bulanin, V.N. Bukhmarina, E.G. Moiseenko, K.G. Tokhodze. Infrared spectra of hydrogen halide solutions in liquefied gases. Opt. and Spectrum 56, 813 (1984).
F. Tukhvatullin, U. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov, B. Hudoyberdiev. Manifestation of intermolecular interactions in Raman spectra and ab initio calculations of molecular aggregation in liquid ethylene glycol. Ukr. J. Phys. 3, 219 (2014).
https://doi.org/10.15407/ujpe59.03.0219
F.Kh. Tukhvatullin, U.N. Tashkenbaev, A. Jumabaev, H. Khushvaktov, A. Absanov. Structure of molecular aggregates in liquids and their manifestations in Raman spectra. Monograph.: Sci. 288 (2014).
V. Krishnakumar, R. Mathammal, S. Muthunatesan. FTIR and Raman spectra vibrational assignments and density functional calculations of 1-naphthyl acetic acid. Spectrochimica Acta Part A 70, 210 (2008).
https://doi.org/10.1016/j.saa.2007.06.040
F. Wan, L. Du, W. Chen, P. Wang, J. Wang, H. Shi. A novel method to directly analyze dissolved acetic acid in transformer oil without extraction using Raman spectroscopy. Energies 10, 967 (2017).
https://doi.org/10.3390/en10070967
F.H. Tukhvatullin, B.G. Hudayberdiev, A. Jumabaev, H.A. Hushvaktov, A.A. Absanov. Aggregation of molecules in liquid pyridine and its solutions: Raman spectra and quantum-chemical calculations. J. Mol. Liq. 155, 67 (2010).
https://doi.org/10.1016/j.molliq.2010.05.015
F.H. Tukhvatullin, A. Jumabaev, G. Muradov, H.A. Hushvaktov, A.A. Absanov. Raman spectra of C≡N vibrations of acetonitrile in aqueous and other solutions. Experimental results and ab initio calculations. J. Raman Spectrosc. 36, 932 (2005).
https://doi.org/10.1002/jrs.1386
B.P. Asthana, V. Deckert, M.K. Shukla, W. Kiefer, Isotopic dilution study of self association in (CH3CN + CD3CN) mixture by scanning multichannel Raman difference technique and ab-initio calculations. Chem. Phys. Lett. 326, 123 (2000).
https://doi.org/10.1016/S0009-2614(00)00728-4
U. Holikulov. Structural, electronic and vibrational properties of L-asparagine. Uzbek Journal of Physics 25 (1), 46 (2023).
https://doi.org/10.52304/.v25i1.405
M. Khodiev, U. Holikulov, A. Jumabaev, N. Issaoui, N. Lavrik, O. Al-Dossary, L. Bousiakoug. Solvent effect on the self-association of the 1,2,4-triazole: A DFT study. J. Mol. Liq. 382, 121960 (2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.