Quantifying Effects of Final-State Interactions on Energy Reconstruction in DUNE

Authors

  • H.R. Sharma Department of Physics, University of Jammu
  • S. Nagu Department of Physics, University of Lucknow
  • J. Singh Department of Physics, University of Lucknow
  • R.B. Singh Department of Physics, University of Lucknow
  • B. Potukuchi Department of Physics, University of Jammu

DOI:

https://doi.org/10.15407/ujpe67.5.312

Keywords:

final state interactions, DUNE, fake events, energy reconstruction

Abstract

In neutrino-nucleus interactions, the particles produced at the primary vertex may be different from the particles observed in the final state. This is due to the effect of final-state interactions (FSI) on the particles during their transport in the nuclear matter to reach the detector (final state) after their production at the primary vertex. In this report, the energy reconstruction is done for charged current quasielastic (CCQE) and charged current resonance (CCRES) scatterings on the event-by-event basis using the calorimetric method, and NuWro and GENIE simulation tools. In addition, the percentage of fake events in CCQE and CCRES interactions is presented. It is found that the percentage of fake events is more than 50% for both CCQE and CCRES processes for both the generators, if we apply the condition for the signal events that the particles observed in the final state should be the same as the particles produced at the primary vertex. Based on our definition of signal events, the reconstructed energy and number of fake events may change, and this influences the measurement of oscillation parameters in long-baseline experiments like DUNE.

References

Y. Farzan, M. Tortola. Neutrino oscillations and non-standard interactions. Front. in Phys. 6, 10 (2018).

https://doi.org/10.3389/fphy.2018.00010

S. Nagu, J. Singh, J. Singh II, R.B. Singh. Nuclear effects and CP sensitivity at DUNE. Adv. High Energy Phys. 2020, 5472713 (2020).

https://doi.org/10.1155/2020/5472713

P. Adamson et al. (MINOS collaboration). A Study of muon neutrino disappearance using the Fermilab main injector neutrino beam. Phys. Rev. D 77, 072002 (2008).

F.P. An et al. (Daya Bay collaboration). Observation of electron antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012).

J.K. Ahn et al. (RENO collaboration). Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012).

F.P. An et al. (Daya Bay collaboration). Improved measurement of electron antineutrino disappearance at Daya Bay. Chin. Phys. C 37, 011001 (2013).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment, far detector technical design report, volume I: introduction to DUNE. JINST 15 no.08, T08008 (2020).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment, far detector technical design report, volume II: DUNE physics. arXiv:2002.03005 [hep-ex].

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment, far detector technical design report, volume III: DUNE far detector technical coordination. JINST 15 (8), T08009 (2020).

B. Abi et al. (DUNE collaboration). Deep underground neutrino experiment, far detector technical design report, volume IV: far detector single-phase technology. JINST 15 (8), T08010 (2020).

https://home.fnal.gov/∼ljf26/DUNE2015CDRFluxes/NuMI_Improved_80GeV_StandardDP/g4lbne_v3r2p4b_FHC_ND_globes_flux.txt.

D.A. Harris et al. (MINERvA collaboration). Neutrino scattering uncertainties and their role in long-baseline oscillation experiments. arXiv:hep-ex/0410005 [hep-ex].

P. Coloma, P. Huber, J. Kopp, W. Winter. Systematic uncertainties in long-baseline neutrino oscillations for large Θ13. Phys. Rev. D 87 (3), 033004 (2013).

https://doi.org/10.1103/PhysRevD.87.033004

P. Huber, M. Mezzetto, T. Schwetz. On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments. JHEP 03, 021 (2008).

https://doi.org/10.1088/1126-6708/2008/03/021

M. Martini, M. Ericson, G. Chanfray. Neutrino energy reconstruction problems and neutrino oscillations. Phys. Rev. D 85, 093012 (2012).

https://doi.org/10.1103/PhysRevD.85.093012

S. Naaz, A. Yadav, J. Singh, R.B. Singh. Effect of final state interactions on neutrino energy reconstruction at DUNE. Nucl. Phys. B 933, 40 (2018).

https://doi.org/10.1016/j.nuclphysb.2018.05.018

M. Martini, M. Ericson, G. Chanfray. Neutrino energy reconstruction problems and neutrino oscillations. Phys. Rev. D 85, 093012 (2012).

https://doi.org/10.1103/PhysRevD.85.093012

O. Lalakulich, K. Gallmeister, U. Mosel. Neutrino- and antineutrino-induced reactions with nuclei between 1 and 50 GeV. Phys. Rev. C 86, 014607 (2012).

https://doi.org/10.1103/PhysRevC.86.014607

S. Nagu, J. Singh, J. Singh II, R.B. Singh. Impact of crosssectional uncertainties on DUNE sensitivity due to nuclear effects. Nuclear Physics B 951, 114888 (2020).

https://doi.org/10.1016/j.nuclphysb.2019.114888

D. Drakoulakos et al. (MINERvA collaboration). Proposal to perform a high-statistics neutrino scattering experiment using a fine-grained detector in the NuMI beam. arXiv:hepex/0405002 [hep-ex].

J. Evans (MINOS collaboration). The MINOS experiment: Results and prospects. Adv. High Energy Phys. 2013, 182537 (2013).

https://doi.org/10.1155/2013/182537

H. Chen et al. (MicroBooNE collaboration). Proposal for a new experiment using the booster and NuMI neutrino beamlines: MicroBooNE. FERMILAB-PROPOSAL-0974.

M.A. Acero et al. (NOvA collaboration). First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Phys. Rev. Lett. 123 no.15, 151803 (2019).

K. Abe et al. (T2K collaboration). Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. Nature 580 (7803), 339 (2020).

A. Bodek, J.L. Ritchie. Further studies of Fermi-motion effects in lepton scattering from nuclear targets. Phys. Rev. D 24, 1400 (1981).

https://doi.org/10.1103/PhysRevD.24.1400

C.H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rept. 3, 261 (1972).

https://doi.org/10.1016/0370-1573(72)90010-5

R. Bradford, A. Bodek, H.S. Budd, J. Arrington. A New parameterization of the nucleon elastic form-factors. Nucl. Phys. B Proc. Suppl. 159, 127 (2006).

https://doi.org/10.1016/j.nuclphysbps.2006.08.028

A. Bodek, S. Avvakumov, R. Bradford, H.S. Budd. Modeling atmospheric neutrino interactions: Duality constrained parametrization of vector and axial nucleon form factors. arXiv:0708.1827 [hep-ex].

K.M. Graczyk, D. Kielczewska, P. Przewlocki, J.T. Sobczyk. Axial form factor from bubble chamber experiments. Phys. Rev. D 80, 093001 (2009).

https://doi.org/10.1103/PhysRevD.80.093001

D. Rein, L.M. Sehgal. Neutrino excitation of baryon resonances and single pion production. Annals Phys. 133, 79 (1981).

https://doi.org/10.1016/0003-4916(81)90242-6

H.R. Sharma, S. Nagu, J. Singh, R.B. Singh, B. Potukuchi. Study of pion production in νμ interactions on 40Ar in DUNE using GENIE and NuWro event generators. arXiv:2204.05354 [hep-ph].

O. Lalakulich, U. Mosel, K. Gallmeister. Energy reconstruction in quasielastic scattering in the MiniBooNE and T2K experiments. Phys. Rev. C 86, 054606 (2012).

https://doi.org/10.1103/PhysRevC.86.054606

J. Singh, S. Nagu, J. Singh II, R.B. Singh. Quantifying multinucleon effect in argon using high-pressure TPC. Nuclear Physics B 957, 115103 (2020).

https://doi.org/10.1016/j.nuclphysb.2020.115103

L. Alvarez-Ruso et al. (NuSTEC collaboration). NuSTEC white paper: status and challenges of neutrino-nucleus scattering. Prog. Part. Nucl. Phys. 100, 1 (2018).

https://doi.org/10.1016/j.ppnp.2018.01.006

A.M. Ankowski, O. Benhar, P. Coloma, P. Huber, C.M. Jen, C. Mariani, D. Meloni, E. Vagnoni. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments. Phys. Rev. D 92 (7), 073014 (2015).

https://doi.org/10.1103/PhysRevD.92.073014

A.M. Ankowski, P. Coloma, P. Huber, C. Mariani, E. Vagnoni. Missing energy and the measurement of the CPviolating phase in neutrino oscillations. Phys. Rev. D 92 (9), 091301 (2015).

https://doi.org/10.1103/PhysRevD.92.091301

K. Abe et al. (T2K collaboration). The T2K experiment. Nucl. Instrum. Meth. A 659, 106 (2011).

D. Meloni, M. Martini. Revisiting the T2K data using different models for the neutrino-nucleus cross sections. Phys. Lett. B 716, 186 (2012).

https://doi.org/10.1016/j.physletb.2012.08.007

D.G. Michael, P. Adamson, T. Alexopoulos, W.W.M. Allison, G.J. Alner, K. Anderson, C. Andreopoulos, M. Andrews, R. Andrews, C. Arroyo. The magnetized steel and scintillator calorimeters of the MINOS experiment. Nucl. Instr. Methods in Phys. Res. Sec. 596, 190 (2008).

D.S. Ayres et al. (NOvA collaboration). NOvA: Proposal to build a 30 kiloton off-axis detector to study νμ → νe oscillations in the NuMI beamline. arXiv:hep-ex/0503053 [hep-ex].

C. Adams et al. (LBNE collaboration). The long-baseline neutrino experiment: exploring fundamental symmetries of the universe. arXiv:1307.7335 [hep-ex].

R. Acciarri et al. (DUNE collaboration). Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment: conceptual design report, volume 2: The physics program for DUNE at LBNF. arXiv:1512.06148 [physics.ins-det].

Downloads

Published

2022-08-29

How to Cite

Sharma, H., Nagu, S., Singh, J., Singh, R., & Potukuchi, B. (2022). Quantifying Effects of Final-State Interactions on Energy Reconstruction in DUNE. Ukrainian Journal of Physics, 67(5), 312. https://doi.org/10.15407/ujpe67.5.312

Issue

Section

Fields and elementary particles