Low-Field Feshbach Resonances and Three-Body Losses in a Fermionic Quantum Gas of 161Dy
DOI:
https://doi.org/10.15407/ujpe67.5.334Keywords:
ultracold Fermi gases, Feshbach resonances, three-body recombinationAbstract
We report on the high-resolution Feshbach spectroscopy on a degenerate, spin-polarized Fermi gas of 161Dy atoms, measuring three-body recombination losses at a low magnetic field. For field strengths up to 1 G, we identify as much as 44 resonance features and observe the plateaus of very low losses. For four selected typical resonances, we study the dependence of the threebody recombination rate coefficient on the magnetic resonance detuning and on the temperature. We observe a strong suppression of losses with decreasing temperature already for small detunings from the resonance. The characterization of complex behavior of the three-body losses of fermionic 161Dy is important for future applications of this peculiar species in research on atomic quantum gases.
References
L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. LaburtheTolra, B.L. Lev, T. Pfau. Dipolar physics: A review of experiments with magnetic quantum gases. Preprint arXiv:2201.02672 (2022).
C. Chin, R. Grimm, P. Julienne, E. Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).
https://doi.org/10.1103/RevModPhys.82.1225
H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, T. Pfau. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194 (2016).
https://doi.org/10.1038/nature16485
L. Tanzi, E. Lucioni, F. Fam'a, J. Catani, A. Fioretti, C. Gabbanini, R.N. Bisset, L. Santos, G. Modugno. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).
https://doi.org/10.1103/PhysRevLett.122.130405
F. B¨ottcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, T. Pfau. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
https://doi.org/10.1103/PhysRevX.9.011051
L. Chomaz, D. Petter, P. Ilzh¨ofer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R.M.W. van Bijnen, A. Patscheider, M. Sohmen, et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
https://doi.org/10.1103/PhysRevX.9.021012
A. Trautmann, P. Ilzh¨ofer, G. Durastante, C. Politi, M. Sohmen, M.J. Mark, F. Ferlaino. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).
https://doi.org/10.1103/PhysRevLett.121.213601
C. Politi, A. Trautmann, P. Ilzh¨ofer, G. Durastante, M.J. Mark, M. Modugno, F. Ferlaino. Interspecies interactions in an ultracold dipolar mixture. Phys. Rev. A 105, 023304 (2022).
https://doi.org/10.1103/PhysRevA.105.023304
C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, E. Kirilov, R. Grimm. Production of a degenerate Fermi-Fermi mixture of dysprosium and potassium atoms. Phys. Rev. A 98, 063624 (2018).
https://doi.org/10.1103/PhysRevA.98.063624
C. Ravensbergen, E. Soave, V. Corre, M. Kreyer, B. Huang, E. Kirilov, R. Grimm. Resonantly interacting Fermi-Fermi mixture of 161Dy and 40 K. Phys. Rev. Lett. 124, 203402 (2020).
https://doi.org/10.1103/PhysRevLett.124.203402
A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J.L. Bohn, C. Makrides, A. Petrov, S. Kotochigova. Quantum chaos in ultracold collisions of gas-phase erbium atoms. Nature 507, 475 (2014).
https://doi.org/10.1038/nature13137
K. Baumann, N.Q. Burdick, M. Lu, B.L. Lev. Observation of low-field Fano-Feshbach resonances in ultracold gases of dysprosium. Phys. Rev. A 89, 020701(R) (2014).
https://doi.org/10.1103/PhysRevA.89.020701
N.Q. Burdick, Y. Tang, B.L. Lev. Long-lived spin-orbitcoupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016).
https://doi.org/10.1103/PhysRevX.6.031022
T. Maier, H. Kadau, M. Schmitt, M. Wenzel, I. Ferrier-Barbut, T. Pfau, A. Frisch, S. Baier, K. Aikawa, L. Chomaz, et al. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X 5, 041029 (2015).
https://doi.org/10.1103/PhysRevX.5.041029
A. Petrov, E. Tiesinga, S. Kotochigova. Anisotropy induced Feshbach resonances in a quantum dipolar gas of highly magnetic atoms. Phys. Rev. Lett. 109, 103002 (2012).
https://doi.org/10.1103/PhysRevLett.109.103002
S. Kotochigova. Controlling interactions between highly magnetic atoms with Feshbach resonances. Rep. Prog. Phys. 77, 093901 (2014).
https://doi.org/10.1088/0034-4885/77/9/093901
K. Gubbels, H. Stoof. Imbalanced Fermi gases at unitarity. Phys. Rep. 525, 255 (2013).
https://doi.org/10.1016/j.physrep.2012.11.004
J. Wang, Y. Che, L. Zhang, Q. Chen. Enhancement effect of mass imbalance on Fulde-Ferrell-Larkin-Ovchinnikov type of pairing in Fermi-Fermi mixtures of ultracold quantum gases. Sci. Rep. 7, 39783 (2017).
https://doi.org/10.1038/srep39783
M. Pini, P. Pieri, R. Grimm, G.C. Strinati. Beyond-meanfield description of a trapped unitary Fermi gas with mass and population imbalance. Phys. Rev. A 103, 023314 (2021).
https://doi.org/10.1103/PhysRevA.103.023314
C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin. Tuning pwave interactions in an ultracold Fermi gas of atoms. Phys. Rev. Lett. 90, 053201 (2003).
https://doi.org/10.1103/PhysRevLett.90.230404
J. Zhang, E.G.M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon. P-wave Feshbach resonances of ultracold 6Li. Phys. Rev. A 70, 030702 (2004).
https://doi.org/10.1103/PhysRevA.70.030702
C. H. Schunck, M.W. Zwierlein, C.A. Stan, S.M.F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C.J. Williams, P.S. Julienne. Feshbach resonances in fermionic 6Li. Phys. Rev. A 71, 045601 (2005).
https://doi.org/10.1103/PhysRevA.71.045601
H. Suno, B.D. Esry, C.H. Greene. Recombination of three ultracold fermionic atoms. Phys. Rev. Lett. 90, 053202 (2003).
https://doi.org/10.1103/PhysRevLett.90.053202
F. Chevy, E.G.M. van Kempen, T. Bourdel, J. Zhang, L. Khaykovich, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon. Resonant scattering properties close to a p-wave Feshbach resonance. Phys. Rev. A 71, 062710 (2005).
https://doi.org/10.1103/PhysRevA.71.062710
J. Yoshida, T. Saito, M. Waseem, K. Hattori, T. Mukaiyama. Scaling law for three-body collisions of identical fermions with p-wave interactions. Phys. Rev. Lett. 120, 133401 (2018).
https://doi.org/10.1103/PhysRevLett.120.133401
M. Waseem, J. Yoshida, T. Saito, T. Mukaiyama. Unitarity-limited behavior of three-body collisions in a p-wave interacting Fermi gas. Phys. Rev. A 98, 020702 (2018).
https://doi.org/10.1103/PhysRevA.98.020702
T. Maier, H. Kadau, M. Schmitt, A. Griesmaier, T. Pfau. Narrow-line magneto-optical trap for dysprosium atoms. Opt. Lett. 39, 3138 (2014).
https://doi.org/10.1364/OL.39.003138
D. Dreon, L. Sidorenkov, C. Bouazza, W. Maineult, J. Dalibard, S. Nascimbene. Optical cooling and trapping highly magnetic atoms: The benefits of a spontaneous spin polarization. J. Phys. B 50, 065005 (2017).
https://doi.org/10.1088/1361-6455/aa5db5
M. Lu, N.Q. Burdick, B.L. Lev. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).
https://doi.org/10.1103/PhysRevLett.108.215301
V.A. Khlebnikov, D.A. Pershin, V.V. Tsyganok, E.T. Davletov, I.S. Cojocaru, E.S. Fedorova, A.A. Buchachenko, A.V. Akimov. Random to chaotic statistic transformation in low-field Fano-Feshbach resonances of cold thulium atoms. Phys. Rev. Lett. 123, 213402 (2019).
https://doi.org/10.1103/PhysRevLett.123.213402
B.D. Esry, C.H. Greene, H. Suno. Threshold laws for threebody recombination. Phys. Rev. A 65, 010705 (2001).
https://doi.org/10.1103/PhysRevA.65.010705
E.A. Burt, R.W. Ghrist, C.J. Myatt, M.J. Holland, E.A. Cornell, C.E. Wieman. Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay. Phys. Rev. Lett. 79, 337 (1997).
https://doi.org/10.1103/PhysRevLett.79.337
J. S¨oding, D. Gu'ery-Odelin, P. Desbiolles, F. Chevy, H. Inamori, J. Dalibard. Three-body decay of a rubidium Bose-Einstein condensate. Appl. Phys. B 69 (1999).
https://doi.org/10.1007/s003400050805
J.L. Bohn, M. Cavagnero, C. Ticknor. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11, 055039 (2009).
https://doi.org/10.1088/1367-2630/11/5/055039
K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, F. Ferlaino. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett. 112, 010404 (2014).
https://doi.org/10.1103/PhysRevLett.112.010404
A. Green, H. Li, J.H. See Toh, X. Tang, K.C. McCormick, M. Li, E. Tiesinga, S. Kotochigova, S. Gupta. Feshbach resonances in p-wave three-body recombination within FermiFermi mixtures of open-shell 6Li and closed-shell 173Yb atoms. Phys. Rev. X 10, 031037 (2020).
https://doi.org/10.1103/PhysRevX.10.031037
C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn. Multiplet structure of Feshbach resonances in nonzero partial waves. Phys. Rev. A 69, 042712 (2004).
https://doi.org/10.1103/PhysRevA.69.042712
T. Nakasuji, J. Yoshida, T. Mukaiyama. Experimental determination of p-wave scattering parameters in ultracold 6Li atoms. Phys. Rev. A 88, 012710 (2013).
https://doi.org/10.1103/PhysRevA.88.012710
J. Li, J. Liu, L. Luo, B. Gao. Three-body recombination near a narrow Feshbach resonance in 6Li. Phys. Rev. Lett. 120, 193402 (2018)
40. B. DeMarco. Quantum Behavior of an Atomic Fermi Gas. Ph.D. thesis (University of Colorado, 2001).
B.S. Rem, A.T. Grier, I. Ferrier-Barbut, U. Eismann, T. Langen, N. Navon, L. Khaykovich, F. Werner, D.S. Petrov, F. Chevy, et al. Lifetime of the Bose gas with resonant interactions. Phys. Rev. Lett. 110, 163202 (2013).
https://doi.org/10.1103/PhysRevLett.110.163202
R.J. Fletcher, A.L. Gaunt, N. Navon, R.P. Smith, Z. Hadzibabic. Stability of a unitary Bose gas. Phys. Rev. Lett. 111, 125303 (2013).
https://doi.org/10.1103/PhysRevLett.111.125303
T. Maier, I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Pfau, K. Jachymski, P.S. Julienne. Broad universal Feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).
https://doi.org/10.1103/PhysRevA.92.060702
U. Eismann, L. Khaykovich, S. Laurent, I. Ferrier-Barbut, B.S. Rem, A.T. Grier, M. Delehaye, F. Chevy, C. Salomon, L.-C. Ha. Universal loss dynamics in a unitary Bose gas. Phys. Rev. X 6, 021025 (2016).
https://doi.org/10.1103/PhysRevX.6.021025
M. Schmidt, H.-W. Hammer, L. Platter. Three-body losses of a polarized Fermi gas near a p-wave Feshbach resonance
in effective field theory. Phys. Rev. A 101, 062702 (2020).
T. Weber, J. Herbig, M. Mark, H.-C. N¨agerl, R. Grimm. Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys. Rev. Lett. 91, 123201 (2003).
https://doi.org/10.1103/PhysRevLett.91.123201
E. Timmermans. Degenerate Fermion gas heating by hole creation. Phys. Rev. Lett. 87, 240403 (2001).
https://doi.org/10.1103/PhysRevLett.87.240403
T. Weber, J. Herbig, M. Mark, H.-C. N¨agerl, R. Grimm. Bose-Einstein condensation of cesium. Science 299, 232 (2003).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.