Comparative Analysis of Products of Electric Arc Synthesis Using Graphite of Different Grades
DOI:
https://doi.org/10.15407/ujpe68.1.57Keywords:
nanotechnology, carbon nanostructures (CNSs), fullerenes, nanocomposites, carbon nanotubes (CNTs), graphene, plasma, electric arc synthesis, graphite grade MPG-7, graphite grade SIGEAbstract
Carbon nanostructures (CNSs) of different types (carbon nanotubes, fullerenes, and fullerene-like structures) are obtained by the method of electric arc evaporation of SIGE and FGDG-7 graphites in an inert gas (He). A comparative analysis of the characteristics of synthesized CNSs is performed. The optimal technological conditions for the synthesis of CNSs from graphite anode electrodes of comparable grades (SIGE and FGDG-7) are determined. Deposits of the plasma chemical synthesis have been studied. The structure of the synthesized carbon materials is studied by scanning and transmission electron microscopies, and it is shown that carbon nanotubes are formed during the evaporation of SIGE brand graphite even without the use of a catalyst. Differential-thermal, thermogravimetric and differential thermogravimetric analyzes are carried out, and the temperatures of the beginning of the interaction of the formed CNSs with oxygen in air are established. According to data of the photospectral analysis of the synthesis products, it is shown that the fullerene component obtained by the evaporation of SIGE brand graphite contains 10–12% of C60 and C70 fullerenes, which is not inferior to similar indicators of MPG-7 brand graphite. In view of the cheapness of SIGE brand graphite as compared to FGDG-7 graphite brand, it can be argued that carbon nanostructures synthesized from SIGE brand graphite have a lower cost. This fact is important for the synthesis of carbon nanostructures used as fillers in modern composites. In addition, the synthesis of low-cost fullerene and fullerene-like molecules is a great advantage for their study and use in modern materials, because new modern advanced nanotechnologies on the basis of fullerenes are beginning today to be created.
References
Z.-F. Chen, C. Hao, S. Wu, H.-X. Zhao, Y.-M. Pan, C.-Y. Huang, F.-Y. Zhang, W.-L.Li, X.-Z. Zhao, A.-Q. Tang. Spectra of some higher fullerens and their HPLC characteristics. Acta Chim. Sinica 57 (1), 57 (1999).
D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, T.N. Veziroglu. Solubility and transformation of fullerene C60 molecule. NATO Science for Peace and Security, Series C: Environmental Security Part F2, 85 (2008).
https://doi.org/10.1007/978-1-4020-8898-8_7
D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, N.E. Skryabina. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security 2, 87 (2011).
https://doi.org/10.1007/978-94-007-0899-0_7
N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, D.G. Batrishev. Use of absorption spectra for identification of endometallo fullerenes. Him. Fiz. Tehnol. Poverhni. 11 (3), 429 (2020).
https://doi.org/10.15407/hftp11.03.429
O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, Y.O. Tarasenko. The mechanism of forming carbon nanostructures by electric arc-method. Surface 12 (27), 263 (2020) (in Ukrainian).
https://doi.org/10.15407/Surface.2020.12.263
Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko. Iron in Endometalofullerenes, Prog. Phys. Met. 23 (3), 510 (2022).
N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, D. Ang. Gadolinium endofullerenes. J. Nanosci. Nanotechno. 21, 2435 (2021).
https://doi.org/10.1166/jnn.2021.18970
Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, O.O. Havryliuk. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology Him. Fiz. Tehnol. Poverhni. 13 (4), 415 (2022).
https://doi.org/10.15407/hftp13.04.415
A.D. Zolotarenko, A.D. Zolotarenko, V.A. Lavrenko, S.Y. Zaginaichenko, N.A. Shvachko, O.V. Milto, Y.A. Tarasenko. Encapsulated ferromagnetic nanoparticles in carbon shells. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems-II 127 (Springer, 2011).
https://doi.org/10.1007/978-94-007-0899-0_10
O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, O.O. Havryliuk. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Him. Fiz. Tehnol. Poverhni. 13 (3), 259 (2022) (in Ukrainian).
https://doi.org/10.15407/hftp13.03.259
D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, M.V. Chimbai. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Phys. Sci. Technol. 6 (1-2), 46 (2019).
https://doi.org/10.26577/phst-2019-1-p9
S.P. Lykhtorovich, M.M. Nyshchenko, I.E. Galstyan, Eh.M. Rudenko, I.V. Korotash, O.I. Rzheshevska, G.P. Prikhodko, N.A. Gavrylyuk. Nanotubes impact on nanopores parameters and radiowave absorption at 2 GHz in F4 fluoroplastic. Metallofiz. Noveishie Tekhnol. 32 (4), 475 (2010).
H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C60: Buckminsterfullerene. Nature 318, 162 (1985).
https://doi.org/10.1038/318162a0
D.V. Schur, S.Y. Zaginaichenko, T.N. Veziroglu. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energ. 40 (6), 2742 (2015).
https://doi.org/10.1016/j.ijhydene.2014.12.092
A.G. Dubovoi, A.E. Perekos, V.A. Lavrenko, Yu.M. Rudenko, T.V. Efimova. Effect of magnetic field on phasestructural state and magnetic properties of Fe highdispersive powders, produced by electrosparkdirpersion. Nanosystems, Nanomaterials, Nanotechnologies 11 (1), 131 (2013).
V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, Al.D. Zolotarenko. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metall. Met. C 56, 504 (2018).
https://doi.org/10.1007/s11106-018-9922-z
Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, O.O. Havryliuk. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Him. Fiz. Tehnol. Poverhni. 13 (2), 209 (2022).
https://doi.org/10.15407/hftp13.02.209
Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko. Electric arc methods to synthesize carbon nanostructures. Prog. Phys. Met. 23 (3), 528 (2022).
A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, Y.A. Tarasenko. The peculiarities of nanostructures formation in liquid phase. Carbon Nanomaterials in Clean Energy Hydrogen Systems-II 137 (Springer, 2011).
https://doi.org/10.1007/978-94-007-0899-0_11
D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, V.V. Skorokhod. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology 199 (2007).
https://doi.org/10.1007/978-1-4020-5514-0_25
V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko. Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods. Powder Metall. Met. C 57 (9), 596 (2019).
https://doi.org/10.1007/s11106-019-00021-y
N. Akhanova, S. Orazbayev, M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov. The influence of magnetic field on synthesis of iron nanoparticles. J. Nanoscience and Nanotechnology Applications 3 (3), 1 (2019).
G.P. Prihod'ko, N.A. Gavrilyuk, L.V. Dijakon, N.P. Kulishand, A.V. Melezhik. Polypropylene composites filled with carbon nanotubes Nanosystems, Nanomaterials, Nanotechnologies 4, 1081 (2006).
Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, A.D. Zolotarenko. Electric conductive composites based on metal oxides and carbon nanostructures. Metallofiz. Noveishie Tekhnol. 43 (10), 1417 (2021).
M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, M.T. Gabdullin. Synthesis of graphite-encapsulated Ni micro- and nanoparticles using liquid-phase arc discharge. Energies 16 (3), 1450 (2023).
https://doi.org/10.3390/en16031450
Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, M. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, Yu.O. Tarasenko. Plasmochemical synthesis of platinum-containing carbon nanostructures suitable for CJP 3D-printing. Metallofiz. Noveishie Tekhnol. 44 (3), 343 (2022).
Yu. Sementsov, N. Gavriluk, T. Aleksyeyeva, O. Lasarenko. Polymer nanocomposites filled of multiwall carbon nanotubes for medical application. Nanosystems, Nanomaterials, Nanotechnologies 5 (2), 351 (2007).
A.A. Volodin, A.D. Zolotarenko, A.A. Belmesov, E.V. Gerasimova, D.V. Schur, V.R. Tarasov, S.Ju. Zaginajchenko, S.V. Doroshenko, An.D. Zolotarenko, Al.D. Zolotarenko. Electrically conductive composite materials based on metal oxides and carbon nanostructures. Nanosystems, Nanomaterials, Nanotechnologies 12 (4), 705 (2014).
Yu.I. Sementsov, N.A. Gavriluk, G.P. Prikhod'ko, T.A. Alekseeva. Biocompatibility of multiwall cnt and nanocomposites on the base of polymers. Carbon Nanomaterials in Clean Energy Hydrogen Systems 327 (2008).
https://doi.org/10.1007/978-1-4020-8898-8_39
Yu.M. Shulga, S.A. Baskakov, A.D. Zolotarenko, E.N. Kabachkov, V.E. Muradian, D.N. Voilov, V.A. Smirnov, V.M. Martynenko, D.V. Schur, A.P. Pomytkin. Colouring of grapheme oxide nanosheets and colour polymer compositions on their base. Nanosystems, Nanomaterials, Nanotechnologies 11 (1), 161 (2013).
https://doi.org/10.5402/2012/647849
D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina. Experimental evaluation of total hydrogen capacity for fullerite C60. Int. J. Hydrogen Energ. 36 (1), 1143 (2011).
https://doi.org/10.1016/j.ijhydene.2010.06.087
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, Al.D. Zolotarenko. Hydrogen in crystals. Monograph in Russian, Ukraine ("KIM" Publishing House Kiev 2017) (in Russian).
Z.A. Matysina, O.S. Pogorelova, S.Yu. Zaginaichenko, D.V. Schur. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids 56 (1), 9 (1995).
https://doi.org/10.1016/0022-3697(94)00106-5
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energ. 21 (11-12), 1085 (1996).
https://doi.org/10.1016/S0360-3199(96)00050-X
Z.A. Matysina, N.A. Gavrylyuk, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, An.D. Zolotarenko, Al.D. Zolotarenko, N.A. Shvachko. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energ. 46 (50), 25520 (2021).
https://doi.org/10.1016/j.ijhydene.2021.05.069
D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, An.D. Zolotarenko. Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide. Russ. Phys. J. 64 (1), 89 (2021).
https://doi.org/10.1007/s11182-021-02304-7
S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, A.D. Zolotarenko. Li-N-H system - Reversible accumulator and store of hydrogen. Int. J. Hydrogen Energ. 37 (9), 7565 (2012).
https://doi.org/10.1016/j.ijhydene.2012.01.006
S.A. Tikhotskii, I.V. Fokin, D.V. Schur. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth 47 (4), 327 (2011).
https://doi.org/10.1134/S1069351311030062
V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko. Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods. Powder Metall. Met. C 57 (9), 596 (2019).
https://doi.org/10.1007/s11106-019-00021-y
Z.A. Matysina, An.D. Zolonarenko, Al.D. Zolonarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, M.T. Gabdullin. Features of the interaction of hydrogen with metals, alloys and compounds (hydrogen atoms in crystalline solids). Monograph in English, Ukraine ("KIM" Publishing House Kiev 2022) [ISBN: 978-617-628-101-6].
A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, M.T. Gabdullin. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen-metal. Int. J. Hydrogen Energ. 47 (11), 7310 (2022).
https://doi.org/10.1016/j.ijhydene.2021.03.065
Ol.D. Zolotarenko et al. Integration atoms in octa-and tetrahedrical internodes of BCC crystals with a free surface. Vest. Ser. Phys. 81 (2), 68 (2022) (in Russian).
https://doi.org/10.26577/RCPh.2022.v81.i2.09
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, An.D. Zolotarenko. The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int. J. Hydrogen Energ. 43 (33), 16092 (2018).
https://doi.org/10.1016/j.ijhydene.2018.06.168
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, T.I. Shaposhnikova. Phase transformations in the mixed lithium-magnesium imide Li2Mg(NH)2. Russ. Phys. J. 61 (12), 2244 (2019).
https://doi.org/10.1007/s11182-019-01662-7
D.V. Schur, A. Veziroglu, S.Y. Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolonarenko, A.D. Zolonarenko. Theoretical studies of lithiumпїЅaluminum amid and ammonium as perspective hydrogen storage. Int. J. Hydrogen Energ. 44 (45), 24810 (2019).
https://doi.org/10.1016/j.ijhydene.2019.07.205
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin. Hydrogen sorption properties of potassium alanate. Russ. Phys. J. 61 (2), 253 (2018).
https://doi.org/10.1007/s11182-018-1395-5
A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energ. 47 (11), 7281 (2022).
https://doi.org/10.1016/j.ijhydene.2021.03.025
Great Soviet Encyclopedia (Bol'shaja sovetskaja enciklopedija 1969-1978).
A.Ya. Borshchevskii, I.N. Ioffe, L.N. Sidorov, C.I. Troyanov, M.A. Yurovskaya. Fullerenes. Laboratory of Thermochemistry, Faculty of Chemistry, Moscow State University (in Russian) [http://sdome.su/interesting/fullereni].
N.S. Anikina, S.Yu. Zaginaichenko, M.I. Maistrenko, A.D. Zolotarenko, G.A. Sivak, D.V. Schur, L.O. Teslenko. Spectrophotometric Analysis of C60 and C70 fullerenes in toluene solutions. Conference Proceedings "Hydrogen materials science and chemistry of carbon nanomaterials". NATO Science Series. Series 2, Mathematics, physics and chemistry 172, 207 (Kluwer Academic Publishers, 2004). [ISBN: 9781402026676].
https://doi.org/10.1007/1-4020-2669-2_22
O.Y. Kryvushchencko. Physical and chemical characteristics of the interactionbetween fullerite C60 and hydrocarbons. Abstract of thesis. candidate. Chem. sciences in special. 02.00.04 "Physical Chemistry" (IPM NASU, 2013) (in Ukraine).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.