Comparative Analysis of Products of Electric Arc Synthesis Using Graphite of Different Grades

Authors

  • Ol.D. Zolotarenko Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine, Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • E.P. Rudakova Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • I.V. Zagorulko G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • N.Y. Akhanova Kazakhstan-British Technical University, National Nanotechnology Open Laboratory (NNOL), al-Farabi Kazakh National University
  • An.D. Zolotarenko Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine, Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • D.V. Schur Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine, The Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • M.T. Gabdullin Kazakhstan-British Technical University
  • M. Ualkhanova National Nanotechnology Open Laboratory (NNOL), al-Farabi Kazakh National University
  • T.V. Myronenko Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • A.D. Zolotarenko Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • M.V. Chymbai Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • O.E. Dubrova Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.1.57

Keywords:

nanotechnology, carbon nanostructures (CNSs), fullerenes, nanocomposites, carbon nanotubes (CNTs), graphene, plasma, electric arc synthesis, graphite grade MPG-7, graphite grade SIGE

Abstract

Carbon nanostructures (CNSs) of different types (carbon nanotubes, fullerenes, and fullerene-like structures) are obtained by the method of electric arc evaporation of SIGE and FGDG-7 graphites in an inert gas (He). A comparative analysis of the characteristics of synthesized CNSs is performed. The optimal technological conditions for the synthesis of CNSs from graphite anode electrodes of comparable grades (SIGE and FGDG-7) are determined. Deposits of the plasma chemical synthesis have been studied. The structure of the synthesized carbon materials is studied by scanning and transmission electron microscopies, and it is shown that carbon nanotubes are formed during the evaporation of SIGE brand graphite even without the use of a catalyst. Differential-thermal, thermogravimetric and differential thermogravimetric analyzes are carried out, and the temperatures of the beginning of the interaction of the formed CNSs with oxygen in air are established. According to data of the photospectral analysis of the synthesis products, it is shown that the fullerene component obtained by the evaporation of SIGE brand graphite contains 10–12% of C60 and C70 fullerenes, which is not inferior to similar indicators of MPG-7 brand graphite. In view of the cheapness of SIGE brand graphite as compared to FGDG-7 graphite brand, it can be argued that carbon nanostructures synthesized from SIGE brand graphite have a lower cost. This fact is important for the synthesis of carbon nanostructures used as fillers in modern composites. In addition, the synthesis of low-cost fullerene and fullerene-like molecules is a great advantage for their study and use in modern materials, because new modern advanced nanotechnologies on the basis of fullerenes are beginning today to be created.

References

Z.-F. Chen, C. Hao, S. Wu, H.-X. Zhao, Y.-M. Pan, C.-Y. Huang, F.-Y. Zhang, W.-L.Li, X.-Z. Zhao, A.-Q. Tang. Spectra of some higher fullerens and their HPLC characteristics. Acta Chim. Sinica 57 (1), 57 (1999).

D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, T.N. Veziroglu. Solubility and transformation of fullerene C60 molecule. NATO Science for Peace and Security, Series C: Environmental Security Part F2, 85 (2008).

https://doi.org/10.1007/978-1-4020-8898-8_7

D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, N.E. Skryabina. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security 2, 87 (2011).

https://doi.org/10.1007/978-94-007-0899-0_7

N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, D.G. Batrishev. Use of absorption spectra for identification of endometallo fullerenes. Him. Fiz. Tehnol. Poverhni. 11 (3), 429 (2020).

https://doi.org/10.15407/hftp11.03.429

O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, Y.O. Tarasenko. The mechanism of forming carbon nanostructures by electric arc-method. Surface 12 (27), 263 (2020) (in Ukrainian).

https://doi.org/10.15407/Surface.2020.12.263

Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko. Iron in Endometalofullerenes, Prog. Phys. Met. 23 (3), 510 (2022).

N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, D. Ang. Gadolinium endofullerenes. J. Nanosci. Nanotechno. 21, 2435 (2021).

https://doi.org/10.1166/jnn.2021.18970

Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, O.O. Havryliuk. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology Him. Fiz. Tehnol. Poverhni. 13 (4), 415 (2022).

https://doi.org/10.15407/hftp13.04.415

A.D. Zolotarenko, A.D. Zolotarenko, V.A. Lavrenko, S.Y. Zaginaichenko, N.A. Shvachko, O.V. Milto, Y.A. Tarasenko. Encapsulated ferromagnetic nanoparticles in carbon shells. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems-II 127 (Springer, 2011).

https://doi.org/10.1007/978-94-007-0899-0_10

O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, O.O. Havryliuk. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Him. Fiz. Tehnol. Poverhni. 13 (3), 259 (2022) (in Ukrainian).

https://doi.org/10.15407/hftp13.03.259

D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, M.V. Chimbai. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Phys. Sci. Technol. 6 (1-2), 46 (2019).

https://doi.org/10.26577/phst-2019-1-p9

S.P. Lykhtorovich, M.M. Nyshchenko, I.E. Galstyan, Eh.M. Rudenko, I.V. Korotash, O.I. Rzheshevska, G.P. Prikhodko, N.A. Gavrylyuk. Nanotubes impact on nanopores parameters and radiowave absorption at 2 GHz in F4 fluoroplastic. Metallofiz. Noveishie Tekhnol. 32 (4), 475 (2010).

H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C60: Buckminsterfullerene. Nature 318, 162 (1985).

https://doi.org/10.1038/318162a0

D.V. Schur, S.Y. Zaginaichenko, T.N. Veziroglu. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energ. 40 (6), 2742 (2015).

https://doi.org/10.1016/j.ijhydene.2014.12.092

A.G. Dubovoi, A.E. Perekos, V.A. Lavrenko, Yu.M. Rudenko, T.V. Efimova. Effect of magnetic field on phasestructural state and magnetic properties of Fe highdispersive powders, produced by electrosparkdirpersion. Nanosystems, Nanomaterials, Nanotechnologies 11 (1), 131 (2013).

V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, Al.D. Zolotarenko. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metall. Met. C 56, 504 (2018).

https://doi.org/10.1007/s11106-018-9922-z

Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, O.O. Havryliuk. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Him. Fiz. Tehnol. Poverhni. 13 (2), 209 (2022).

https://doi.org/10.15407/hftp13.02.209

Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko. Electric arc methods to synthesize carbon nanostructures. Prog. Phys. Met. 23 (3), 528 (2022).

A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, Y.A. Tarasenko. The peculiarities of nanostructures formation in liquid phase. Carbon Nanomaterials in Clean Energy Hydrogen Systems-II 137 (Springer, 2011).

https://doi.org/10.1007/978-94-007-0899-0_11

D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, V.V. Skorokhod. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology 199 (2007).

https://doi.org/10.1007/978-1-4020-5514-0_25

V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko. Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods. Powder Metall. Met. C 57 (9), 596 (2019).

https://doi.org/10.1007/s11106-019-00021-y

N. Akhanova, S. Orazbayev, M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov. The influence of magnetic field on synthesis of iron nanoparticles. J. Nanoscience and Nanotechnology Applications 3 (3), 1 (2019).

G.P. Prihod'ko, N.A. Gavrilyuk, L.V. Dijakon, N.P. Kulishand, A.V. Melezhik. Polypropylene composites filled with carbon nanotubes Nanosystems, Nanomaterials, Nanotechnologies 4, 1081 (2006).

Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, A.D. Zolotarenko. Electric conductive composites based on metal oxides and carbon nanostructures. Metallofiz. Noveishie Tekhnol. 43 (10), 1417 (2021).

M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, M.T. Gabdullin. Synthesis of graphite-encapsulated Ni micro- and nanoparticles using liquid-phase arc discharge. Energies 16 (3), 1450 (2023).

https://doi.org/10.3390/en16031450

Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, M. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, Yu.O. Tarasenko. Plasmochemical synthesis of platinum-containing carbon nanostructures suitable for CJP 3D-printing. Metallofiz. Noveishie Tekhnol. 44 (3), 343 (2022).

Yu. Sementsov, N. Gavriluk, T. Aleksyeyeva, O. Lasarenko. Polymer nanocomposites filled of multiwall carbon nanotubes for medical application. Nanosystems, Nanomaterials, Nanotechnologies 5 (2), 351 (2007).

A.A. Volodin, A.D. Zolotarenko, A.A. Belmesov, E.V. Gerasimova, D.V. Schur, V.R. Tarasov, S.Ju. Zaginajchenko, S.V. Doroshenko, An.D. Zolotarenko, Al.D. Zolotarenko. Electrically conductive composite materials based on metal oxides and carbon nanostructures. Nanosystems, Nanomaterials, Nanotechnologies 12 (4), 705 (2014).

Yu.I. Sementsov, N.A. Gavriluk, G.P. Prikhod'ko, T.A. Alekseeva. Biocompatibility of multiwall cnt and nanocomposites on the base of polymers. Carbon Nanomaterials in Clean Energy Hydrogen Systems 327 (2008).

https://doi.org/10.1007/978-1-4020-8898-8_39

Yu.M. Shulga, S.A. Baskakov, A.D. Zolotarenko, E.N. Kabachkov, V.E. Muradian, D.N. Voilov, V.A. Smirnov, V.M. Martynenko, D.V. Schur, A.P. Pomytkin. Colouring of grapheme oxide nanosheets and colour polymer compositions on their base. Nanosystems, Nanomaterials, Nanotechnologies 11 (1), 161 (2013).

https://doi.org/10.5402/2012/647849

D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina. Experimental evaluation of total hydrogen capacity for fullerite C60. Int. J. Hydrogen Energ. 36 (1), 1143 (2011).

https://doi.org/10.1016/j.ijhydene.2010.06.087

Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, Al.D. Zolotarenko. Hydrogen in crystals. Monograph in Russian, Ukraine ("KIM" Publishing House Kiev 2017) (in Russian).

Z.A. Matysina, O.S. Pogorelova, S.Yu. Zaginaichenko, D.V. Schur. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids 56 (1), 9 (1995).

https://doi.org/10.1016/0022-3697(94)00106-5

Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energ. 21 (11-12), 1085 (1996).

https://doi.org/10.1016/S0360-3199(96)00050-X

Z.A. Matysina, N.A. Gavrylyuk, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, An.D. Zolotarenko, Al.D. Zolotarenko, N.A. Shvachko. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energ. 46 (50), 25520 (2021).

https://doi.org/10.1016/j.ijhydene.2021.05.069

D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, An.D. Zolotarenko. Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide. Russ. Phys. J. 64 (1), 89 (2021).

https://doi.org/10.1007/s11182-021-02304-7

S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, A.D. Zolotarenko. Li-N-H system - Reversible accumulator and store of hydrogen. Int. J. Hydrogen Energ. 37 (9), 7565 (2012).

https://doi.org/10.1016/j.ijhydene.2012.01.006

S.A. Tikhotskii, I.V. Fokin, D.V. Schur. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth 47 (4), 327 (2011).

https://doi.org/10.1134/S1069351311030062

V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko. Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods. Powder Metall. Met. C 57 (9), 596 (2019).

https://doi.org/10.1007/s11106-019-00021-y

Z.A. Matysina, An.D. Zolonarenko, Al.D. Zolonarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, M.T. Gabdullin. Features of the interaction of hydrogen with metals, alloys and compounds (hydrogen atoms in crystalline solids). Monograph in English, Ukraine ("KIM" Publishing House Kiev 2022) [ISBN: 978-617-628-101-6].

A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, M.T. Gabdullin. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen-metal. Int. J. Hydrogen Energ. 47 (11), 7310 (2022).

https://doi.org/10.1016/j.ijhydene.2021.03.065

Ol.D. Zolotarenko et al. Integration atoms in octa-and tetrahedrical internodes of BCC crystals with a free surface. Vest. Ser. Phys. 81 (2), 68 (2022) (in Russian).

https://doi.org/10.26577/RCPh.2022.v81.i2.09

Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, An.D. Zolotarenko. The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int. J. Hydrogen Energ. 43 (33), 16092 (2018).

https://doi.org/10.1016/j.ijhydene.2018.06.168

Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, T.I. Shaposhnikova. Phase transformations in the mixed lithium-magnesium imide Li2Mg(NH)2. Russ. Phys. J. 61 (12), 2244 (2019).

https://doi.org/10.1007/s11182-019-01662-7

D.V. Schur, A. Veziroglu, S.Y. Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolonarenko, A.D. Zolonarenko. Theoretical studies of lithiumпїЅaluminum amid and ammonium as perspective hydrogen storage. Int. J. Hydrogen Energ. 44 (45), 24810 (2019).

https://doi.org/10.1016/j.ijhydene.2019.07.205

Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin. Hydrogen sorption properties of potassium alanate. Russ. Phys. J. 61 (2), 253 (2018).

https://doi.org/10.1007/s11182-018-1395-5

A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energ. 47 (11), 7281 (2022).

https://doi.org/10.1016/j.ijhydene.2021.03.025

Great Soviet Encyclopedia (Bol'shaja sovetskaja enciklopedija 1969-1978).

A.Ya. Borshchevskii, I.N. Ioffe, L.N. Sidorov, C.I. Troyanov, M.A. Yurovskaya. Fullerenes. Laboratory of Thermochemistry, Faculty of Chemistry, Moscow State University (in Russian) [http://sdome.su/interesting/fullereni].

N.S. Anikina, S.Yu. Zaginaichenko, M.I. Maistrenko, A.D. Zolotarenko, G.A. Sivak, D.V. Schur, L.O. Teslenko. Spectrophotometric Analysis of C60 and C70 fullerenes in toluene solutions. Conference Proceedings "Hydrogen materials science and chemistry of carbon nanomaterials". NATO Science Series. Series 2, Mathematics, physics and chemistry 172, 207 (Kluwer Academic Publishers, 2004). [ISBN: 9781402026676].

https://doi.org/10.1007/1-4020-2669-2_22

O.Y. Kryvushchencko. Physical and chemical characteristics of the interactionbetween fullerite C60 and hydrocarbons. Abstract of thesis. candidate. Chem. sciences in special. 02.00.04 "Physical Chemistry" (IPM NASU, 2013) (in Ukraine).

Downloads

Published

2023-03-12

How to Cite

Zolotarenko, O., Rudakova, E., Zagorulko, I., Akhanova, N., Zolotarenko, A., Schur, D., Gabdullin, M., Ualkhanova, M., Myronenko, T., Zolotarenko, A., Chymbai, M., & Dubrova, O. (2023). Comparative Analysis of Products of Electric Arc Synthesis Using Graphite of Different Grades. Ukrainian Journal of Physics, 68(1), 57. https://doi.org/10.15407/ujpe68.1.57

Issue

Section

Structure of materials

Most read articles by the same author(s)