Elucidation of Conditions for Excitation of Surface Polaritons in Mg0.2Zn0.8O Ceramics Using the Disturbed Total Internal Reflection Method

Authors

  • O. Melnichuk Mykola Gogol State University of Nizhyn
  • N. Korsunska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • L. Melnichuk Mykola Gogol State University of Nizhyn
  • L. Khomenkova V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine, National University of Kyiv-Mohyla Academy
  • Ye. Venger V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.8.611

Keywords:

(Mg,Zn)O, solid solution, optical properties, infrared spectroscopy, dispersion analysis, reflection coefficient

Abstract

Conditions for the excitation of surface polaritons in Mg0,2Zn0,8O ceramics have been theoretically analyzed for the first time, and the surface of the disturbed total internal reflection I(ν)/I0(ν) has been plotted, which is a three-dimensional representation of the transmission coefficient in the IR spectral interval. Its dependence on the frequency and incidence angle of radiation is determined. The external reflection IR spectra are measured to calculate the required optical and electrophysical parameters of ceramics using the method of dispersion analysis. The possibility of researching the resonant interaction between optical phonons and plasmons has been demonstrated. The obtained results are in good agreement with the literature data.

References

N.L. Dmitruk, V.G. Litovchenko, V.L. Strizhevskii. Surface Polaritons in Semiconductors and Insulators (Naukova Dumka, Kyiv, 1989) (in Russian).

E.A. Vinogradov, N.N. Novikova, V.A. Yakovlev. Nearfield phonon-polariton spectroscopy as a method for studying the optical properties of nanofilms. Usp. Fiz. Nauk 184, 653 (2014) (in Russian).

https://doi.org/10.3367/UFNr.0184.201406g.0653

I.V. Venger, Ye.F. Venger, L.Yu. Melnichuk, O.V. Melnichuk. Anisotropy of Surface Plasmon-phonon Polaritons in ZnO and 6H-SiC Single Crystals (Naukova Dumka, 2020) (in Ukrainian).

A.V. Melnichuk Investigation of surface polaritons in zinc oxide single crystals. Funct. Mater. 5, 25 (1998).

I.I. Burshta, Ye.F. Venger, A.V. Melnichuk, Yu.A. Pasechnik, A.P. Liptuga. Method for Modulating Electromagnetic Radiation and Device for Its Implementation. Application for invention No. 5000 180/25 (August 13, 1991) (in Russian).

U. ¨Ozg¨ur, D. Hofstetter, H. Morko¸c. ZnO devices and applications: a review of current status and future prospects, Proc. IEEE 98, 1255 (2010).

https://doi.org/10.1109/JPROC.2010.2044550

M. Suja, S.B. Bashar, B. Debnath, L. Su, W. Shi, R. Lake, J. Liu. Electrically driven deep ultraviolet MgZnO lasers at room temperature. Sci. Rep. 7, 2677 (2017).

https://doi.org/10.1038/s41598-017-02791-0

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa. MgxZn1−xO as a II-VI widegap semiconductor alloy. Appl. Phys. Lett. 71, 2466 (1998).

https://doi.org/10.1063/1.121384

T. Makino, Y. Segawa, A. Ohtomo, K. Tamura, H. Koinuma. Band gap engineering based on MgxZn1−xO and CdyZn1−yO films ternary alloy films. Appl. Phys. Lett. 78, 1237 (2001).

https://doi.org/10.1063/1.1350632

O. Melnichuk, N. Korsunska, I. Markevich, V. Boyko, Yu. Polishchuk, Z. Tsybrii, L. Melnichuk, E. Venger, V. Kladko, L. Khomenkova. Peculiarities of specular infrared reflection spectra of ZnO-based ceramics. Semicond. Phys. Quant. Electron. Optoelectron. 24, 390 (2021).

C. Bundesmann, A.Rahm, M. Lorenz, M. Grundmann, M. Schubert. Infrared optical properties of MgxZn1−xO thin films (0 ≤ x ≤ 1): Long-wavelength optical phonons and dielectric constants. J. Appl. Phys. 99, 113504 (2006).

https://doi.org/10.1063/1.2200447

Y. Jin, B. Zhang, Y. Shuming, Y. Wang, J. Chen, H. Zhang, C. Huang, C. Cao, H. Cao, R.P.H. Chang. Room temperature UV emission of MgxZn1−xO films. Solid State Commun. 119, 409 (2001).

https://doi.org/10.1016/S0038-1098(01)00244-7

A. Kaushal, D. Kaur. Effect of Mg content on structural, elecrical and optical properties of Zn1−xMgxO nanocomposite thin films. Solar Energy Mater. Solar Cells. 93, 193 (2009).

https://doi.org/10.1016/j.solmat.2008.09.039

J. Chen, W.Z. Shen. Long-wavelength optical phonon properties of ternary MgZnO thin films. Appl. Phys. Lett. 83, 2154 (2003).

https://doi.org/10.1063/1.1610795

O.V. Melnichuk, L.Yu. Melnichuk, N.O. Korsunska, L.Yu. Khomenkova, Ye.F. Venger, I.V. Venger. Phononpolariton excitations in MgZnO/6H-SiC structures. Ukr. J. Phys. 65, 162 (2020).

https://doi.org/10.15407/ujpe65.2.162

O. Melnichuk, L. Melnichuk, N. Korsunska, L. Khomenkova, Ye. Venger. Surface polariton in optical-anisotropic MgxZnO1−x/6H-SiC structures. Funct. Mater. 27, 559 (2020).

O. Melnichuk, L. Melnichuk, T. Torchynska, Ye. Venger, N. Korsunska, L. Khomenkova. Effect of plasmon-phonon interaction on the infrared reflection spectra of MgxZn1−xO/Al2O3 structures. J. Mater. Sci. Mater. Electron. 31, 7559 (2020).

https://doi.org/10.1007/s10854-020-03110-6

Published

2022-12-04

How to Cite

Melnichuk, O., Korsunska, N., Melnichuk, L., Khomenkova, L., & Venger, Y. (2022). Elucidation of Conditions for Excitation of Surface Polaritons in Mg0.2Zn0.8O Ceramics Using the Disturbed Total Internal Reflection Method. Ukrainian Journal of Physics, 67(8), 611. https://doi.org/10.15407/ujpe67.8.611

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)