Exciton and Percolation Processes in Two-phase Core-shell SiO2/ZnO Structures with a Large Density of Surface Nanoclusters

Authors

  • V.M. Bondar Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M.S. Brodyn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • Yu.V. Yermolaeva Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
  • M.V. Dobrotvorskaya Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
  • A.V. Tolmachev Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe55.9.1032

Keywords:

-

Abstract

We report the results of studies of two-phase core-shell (SiO2/ZnO) structures with a large density of ZnO nanoclusters on the surface of spherical SiO2 nanoparticles. It is proved that, due to the large surface energy of the latter, nanoclusters grow in the form of quantum disks with diameter exceeding 10 nm and with height of the order of the Bohr radius of an exciton in ZnO. The height was estimated in the effective mass approximation and agrees well with experimental data. It is first shown that the photoluminescence spectra of these structures can be caused by the phase percolation transition of excitons on the spherical surface of nanoparticles which is realized due to a large density of ZnO nanoclusters. This results in the interaction of the latter,
but the space effect of excitons does not vanish in this case, unlike the 3D one. The exciton wave function acquires macroscopic
dimensions resulting in the appearance of an intense band from deep levels related to vacancies and complexes of oxygen and zinc.

References

L.P. Balet, S.A. Ivanov, A. Piryatinski, M. Achermann, and V.I. Klimov, Nano Lett. 4, 1485 (2004).

A. Piryatinski, S.A. Ivanov, S. Tretiak, and V.I. Klimov, Nano Lett. 7, 108 (2007).

O.C. Monteiro, A.C.C. Esteves, and T. Trindade, Chem. Matt. 14, 2900 (2002).

B. Liu, G.Q. Xu, L.M. Gan, C.H. Chew, W.S. Li, and Z.X. Shen, J. Appl. Phys. 89, 1059 (2001).

Y. Yang, H. Yan, Z. Fu, B.Yang, L. Xia, Z. Wang, J. Zuo, Sh. Yu, Sh. Fu, and F. Li, J. Lumin. 124, 228 (2007).

P.K. Sharma, R.K. Dutta, M. Kumar, P.K. Singh, and A.C. Pandey, J. Lumin. 129, 605 (2009).

Y.V. Yermolayeva, Y.N. Savin, and A.V. Tolmachev, Sol. St. Phenom. 151, 264 (2009).

M.V. Dobrotvorskaya, V.L. Karbovskii, T.I. Korshikova, and A.V. Tolmachev, Nanosist. Nanomater. Nanotekhnol. 6, 829 (2008).

H.-L. Xia and F.-Q. Tang, J. Phys. Chem. B 107, 9175 (2003).

N.V. Bondar, Fiz. Nizk. Temp. 35, 307 (2009); N.V. Bondar and M.S. Brodyn, Phys. E 42, 1549 (2010).

V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, and J. Liu, Phys. Rev. B 73, 165317 (2006).

A. Janotti and C.G.Van de Walle, Phys. Rev. B 76, 165202 (2007).

A.Teke, ¨U. ¨Ozg¨ur, S.Doрan, X.Gu, H.Morko¸c, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).

S. Le Goff and B. Stebe, Phys. Rev. B 47, 1383 (1993).

N. Johner, C. Grimaldi, I. Balberg, and P. Ryser, Phys. Rev. B 77, 174204 (2008).

S. Torquato, Phys. Rev. E 51, 3170 (1995); A. Scardicchio, C.E. Zachary, and S. Torquato, Phys. Rev. E 79, 041108 (2009).

B. Lu and S. Torquato, Phys. Rev. A 45, 5530 (1992).

D. Scott and C.A. Tout, Mon. Not. R. Astron. Soc. 241, 109 (1989).

Published

2025-01-22

How to Cite

Bondar, V., Brodyn, M., Yermolaeva, Y., Dobrotvorskaya, M., & Tolmachev, A. (2025). Exciton and Percolation Processes in Two-phase Core-shell SiO2/ZnO Structures with a Large Density of Surface Nanoclusters. Ukrainian Journal of Physics, 55(9), 1032. https://doi.org/10.15407/ujpe55.9.1032

Issue

Section

Nanosystems

Most read articles by the same author(s)