Single-electron Optical Properties of Metal Nanoshells with a Nonconcentric Core. Account of Electron Spectrum Quantization

Authors

  • V.V. Kulish National Technical University of Ukraine "Kyiv Polytechnical Institute", Physico-Technical Institute, Chair of Applied Physics

DOI:

https://doi.org/10.15407/ujpe56.6.576

Keywords:

-

Abstract

Single-electron optical properties of a spherical nanoparticle composed of a dielectric core and a thin metallic shell and characterized by a slight shift of the core center with respect to the geometric center of a nanoparticle have been studied in the frequency range far from the plasmon resonance, where the contribution of the single-electron component is considerable. A model that allows the wave functions and the wavenumber spectrum for an electron in the shell of a composite nanoparticle of this type to be obtained is proposed. The model is used to obtain the matrix elements of optical transitions and the single-electron optical conductivity of a nanoparticle both with and without (semiclassical conductivity) quantization of the electron energy spectrum in the shell. It is shown that the aforementioned quantization effects result in the appearance of the oscillatory dependence of the optical conductivity of a nanoparticle on the light frequency. It is demonstrated that the influences of the center shift and the spectrum quantization on the optical conductivity of a nanoparticle can be considered independently in the first approximation.

References

R.D. Averitt, S.I. Westcott, and N.J. Halas, Phys. Rev. B 58, 203 (1998).

R.D. Averitt, S.I. Westcott, and N.J. Halas, J. Opt. Soc. Am. 16, 1814 (1999).

R.D. Averitt, S.I. Westcott, and N.J. Halas, J. Opt. Soc. Am. 16, 1824 (1999).

L.R. Hirsch, A.M. Gobin, A.R. Lowery et al., Ann. Biomed. Eng. 34, 15 (2006).

F. Le, N.Z. Lwin, N.J. Halas et al., Phys. Rev. 76, 165410 (2007).

P. Nordlander and E. Prodan, Proc. SPIE 4810, 91 (2002).

E. Prodan, P. Nordlander, and N.J. Halas, Chem. Phys. Lett. 94, 368 (2003).

R. Chang and P.T. Leung, Phys. Rev. B 73, 125438 (2006).

E. Prodan and P. Nordlander, Chem. Phys. Lett. 349, 153 (2001).

E. Prodan and P. Nordlander, Chem. Phys. Lett. 352, 140 (2002).

J. Zhu, Materials Sci. Eng. A 454–455, 685 (2007).

K.-T. Yong, Y. Sahoo, M.T. Swihart, and P.N. Prasad, Colloids Surf. A 290, 89 (2006).

R.D. Averitt, D. Sarkar, and N.J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

N. Garcia and I.L. Costa-Kramer, Europhys. News 27, 89 (1996).

P.M. Tomchuk and B.P. Tomchuk, Zh. Eksp. Teor. Fiz. 112, 661 (1997).

E.V. Zavitaev, A.A. Yushkanov, and Yu I. Yalamov, Zh. Eksp. Teor. Fiz. 124, 1112 (2003).

E.V. Zavitaev and A.A. Yushkanov, Opt. Spektrosk. 97, 131 (2004).

E.V. Zavitaev and A.A. Yushkanov, Pis'ma Zh. Tekh. Fiz. 30, 74 (2004).

H. Wang, W. Yampeng, B. Lassiter et al., Proc. Nat. Acad. Sci. USA 103, 10856 (2006).

Y. Wu and P. Nordlander, J. Chem. Phys. 125, 124708 (2006).

J.B. Lassiter, M.W. Knight, N.A. Mirin, and N.J. Halas, Nano Lett. 9, 4326 (2009).

V.V. Kulish and P.M. Tomchuk, Surf. Sci. 602, 1045 (2008).

Published

2022-02-10

How to Cite

Kulish В. (2022). Single-electron Optical Properties of Metal Nanoshells with a Nonconcentric Core. Account of Electron Spectrum Quantization. Ukrainian Journal of Physics, 56(6), 576. https://doi.org/10.15407/ujpe56.6.576

Issue

Section

Nanosystems