Two-fermion Composite Quasi-bosons and Deformed Oscillators

Authors

  • A.M. Gavrilik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • I.I. Kachurik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • Yu.A. Mishchenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.9.948

Keywords:

-

Abstract

The concept of quasi-bosons or composite bosons (like mesons, excitons, etc.) has a wide range of potential physical applications. Even composed of two pure fermions, the quasi-boson creation and annihilation operators satisfy non-standard commutation relations. It is natural to try to realize the quasi-boson operators by the operators of a deformed (nonlinear) oscillator, the latter
constituting a widely studied field of modern quantum physics. In this paper, it is proven that the deformed oscillators which realize
quasi-boson operators in a consistent way really exist. The conditions for such realization are derived, and the uniqueness of the family of deformations under consideration is shown.

References

W.R. Perkins, Int. J. Th. Phys. 41, 833 (2002).

https://doi.org/10.1093/rheumatology/41.7.833

S.S. Avancini and G. Krein, J. Phys. A: Math. Gen. 28, 685 (1995).

https://doi.org/10.1088/0305-4470/28/3/021

O.W. Greenberg, Phys. Rev. D 43, 4111 (1991).

https://doi.org/10.1103/PhysRevD.43.4111

M. Arik and D.D. Coon, J. Math. Phys. 17, 524 (1976).

https://doi.org/10.1063/1.522937

L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989)

https://doi.org/10.1088/0305-4470/22/18/004

A.J. Macfarlane, J. Phys. A: Gen. 22, 4581 (1989).

https://doi.org/10.1088/0305-4470/22/21/020

K. Odaka, T. Kishi, and S. Kamefuchi, J. Phys. A: Math. Gen. 24, L591 (1991)

https://doi.org/10.1088/0305-4470/24/11/004

S. Chaturvedi, V. Srinivasan, and R. Jagannathan, Mod. Phys. Lett. A 8, 3727 (1993).

https://doi.org/10.1142/S0217732393003457

A.M. Gavrilik and A.P. Rebesh, Mod. Phys. Lett. A 22, 949 (2007).

https://doi.org/10.1142/S0217732307022827

A. Chakrabarti and R. Jagannathan, J. Phys. A: Math. Gen. 24, 711 (1991).

https://doi.org/10.1088/0305-4470/24/13/002

A.M. Gavrilik and A.P. Rebesh, Mod. Phys. Let. A 23, 921 (2008).

https://doi.org/10.1142/S021773230802687X

A. Jannussis, J. Phys. A: Math. Gen. 26, L233 (1993).

https://doi.org/10.1088/0305-4470/26/5/011

S. Meljanac, M. Mileković, and S. Pallua, Phys. Lett. B 328, 55 (1994).

https://doi.org/10.1016/0370-2693(94)90427-8

D. Bonatsos and C. Daskaloyannis, Prog. Part. Nucl. Phys. 43, 537 (1999).

https://doi.org/10.1016/S0146-6410(99)00100-3

A.M. Gavrilik, I.I. Kachurik, and A.P. Rebesh, J. Phys. A: Math. Theor. 43, 245204 (2010).

https://doi.org/10.1088/1751-8113/43/24/245204

V.I. Man'ko et al., Phys. Scripta 55, 528 (1997).

https://doi.org/10.1088/0031-8949/55/5/004

A.M. Gavrilik and A.P. Rebesh, J. Phys. A: Math. Theor. 43, 095203 (2010) (15pp).

https://doi.org/10.1088/1751-8113/43/9/095203

L.V. Adamska and A.M. Gavrilik, J. Phys. A: Math. Gen. 37, 4787 (2004).

https://doi.org/10.1088/0305-4470/37/17/009

A.M. Gavrilik, SIGMA 2, Paper 074 (2006).

https://doi.org/10.1088/1126-6708/2006/08/074

D. Anchishkin, A. Gavrilik, and N. Iorgov, Eur. Phys. J. A 7, 229 (2000)

https://doi.org/10.1007/s100500050386

A.M. Gavrilik, Nucl. Phys. B, Proc. Suppl. 102, 298 (2001).

https://doi.org/10.1016/S0920-5632(01)01570-5

D. Anchishkin, A. Gavrilik, and N. Iorgov, Mod. Phys. Lett. A 15, 1637 (2000).

https://doi.org/10.1016/S0217-7323(00)00175-4

C.I. Ribeiro-Silva, E.M.F. Curado, and M.A. Rego-Monteiro, J. Phys. A: Math. Theor. 41, 145404 (2008).

https://doi.org/10.1088/1751-8113/41/14/145404

M. Rego-Monteiro, L.M.C.S. Rodrigues, and S. Wulck, Phys. Rev. Lett. 76, 1098 (1998); Physica A 259, 245 (1998).

https://doi.org/10.1016/S0378-4371(97)00633-X

G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

A.M. Gavrilik, I.I. Kachurik, and Yu.A. Mishchenko, "Quasibosons composed of two q-fermions: realization by deformed oscillators", arXiv: 1107.5704.

A.M. Gavrilik and Yu.A. Mishchenko, "Entanglement in composite bosons realized by deformed oscillators", arXiv: 1108.0936.

Published

2022-02-08

How to Cite

Gavrilik О., Kachurik І., & Mishchenko Ю. (2022). Two-fermion Composite Quasi-bosons and Deformed Oscillators. Ukrainian Journal of Physics, 56(9), 948. https://doi.org/10.15407/ujpe56.9.948

Issue

Section

General problems of theoretical physics