Silicon p-MOS and n-MOS Transistors with Uniaxially Strained Channels in Electronic Device Nanotechnology

Authors

  • A.E. Gorin V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • G.V. Gromova Taras Shevchenko National University of Kyiv
  • V.M. Ermakov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P.P. Kogoutyuk Taras Shevchenko National University of Kyiv
  • V.V. Kolomoets V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P.F. Nasarchuk Lesya Ukrainka Volyn National University
  • L.I. Panasjuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S.A. Fedosov Lesya Ukrainka Volyn National University

DOI:

https://doi.org/10.15407/ujpe56.9.917

Keywords:

-

Abstract

The effect of uniaxial stress on the mobility of charge carriers in n-Si and p-Si crystals used for the fabrication of n-MOS and p-MOS transistors is considered. The stress dependences of the longitudinal and transverse tensoresistive effects in p-Si obtained for the principal crystallographic orientations (X ║ [100], X ║ [110], and X ║ [111]) are presented. An abrupt decrease of the longitudinal tensoresistive effect in p-Si with increasing stress is due to a reduction of the longitudinal effective mass of heavy holes and the corresponding rise of their mobility. In n-Si, a growth of the uniaxial stress X ║ [100] results in the complete removal of f-transitions from intervalley scattering under a large energy splitting of single-type ∆1-valleys (∆ε > 10 kT), which leads to an increase of the electron mobility in the temperature range 78–300 K. The change of g-transitions under the splitting of single-type ∆1 valleys in this temperature interval has no effect on the electron mobility. We also describe technological developments used by “Intel Corporation” for the fabrication of integrated circuits with uniaxially strained channels of MOS transistors.

References

S. Thompson, N. Anand, M. Armstrong et al., IEDM Tech. Dig. 61 (2002).

T. Ghana et al., IEDM Tech. Dig. 978 (2003).

V.N. Ermakov, A.V. Fedosov, V.V. Kolomoets, and A.E. Gorin, Nov. Tekhnol. 20, 48 (2008).

G.L. Bir and G.E. Pikus, Symmetry and Deformation Effects in Semiconductors (Nauka, Moscow, 1972) (in Russian).

P.I. Baranskii, I.V. Dakhovskii, V.V. Kolomoets, and A.V. Fedosov, Fiz. Tekhn. Polupr. 10, 1480 (1976).

S.I. Budzulyak, A.E. Gorin, V.M. Ermakov et al., Phys. Stat. Sol. (b) 223, 519 (2001).

https://doi.org/10.1002/1521-3951(200101)223:2<519::AID-PSSB519>3.0.CO;2-I

M.A. Paalanen, T.F. Rosenbaum, G.A. Thomas, and R.N. Bhatt, Phys. Rev. Lett. 48, 1284 (1982).

https://doi.org/10.1103/PhysRevLett.48.1284

C. Urban, C. Sandow, Q.T. Zhao, and S. Mantl, in X Intern. Conf. on Ultimate Integration of Silicon, Aachen, Germany (2009), p. 65.

V.V. Kolomoets, B.A. Sus', V.N. Ermakov, and V.E. Rodionov, Patent for invention N2040785, Russia (1995).

C.S. Smith, Phys. Rev. 94, 42 (1954). https://doi.org/10.1103/PhysRev.94.42

Published

2022-02-08

How to Cite

Gorin А., Gromova Г., Ermakov В., Kogoutyuk П., Kolomoets В., Nasarchuk П., Panasjuk Л., & Fedosov С. (2022). Silicon p-MOS and n-MOS Transistors with Uniaxially Strained Channels in Electronic Device Nanotechnology. Ukrainian Journal of Physics, 56(9), 917. https://doi.org/10.15407/ujpe56.9.917

Issue

Section

Solid matter