Self-Consistent Microscopic Model of the Energy Spectrum of Superfluity 4He with the Hermitian Form of the Bogolyubov–Zubarev Hamiltonian

Authors

  • K.V. Grigorishin Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • B.I. Lev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.11.1182

Keywords:

-

Abstract

Based on the representation of collective variables with the Hermitian form of the Bogolyubov–Zubarev Hamiltonian, a self-consistent oscillator model of the ground state and excited states of a Bose liquid has been proposed. A new method of calculation of anharmonic terms in this Hamiltonian and its interpretation have been presented. The dispersion equation for a collective excitation in superfluid 4He has been obtained in a self-consistent way, where the real and virtual processes of decay of a collective excitation are considered. The end point, which is determined by the threshold of collective excitation's decay into two rotons, of the dispersion curve has been obtained, and it is shown that the dispersion curve strongly depends on the property of its stability. An approach with a structure factor has been realized without use of any fitting parameters. Based on the oscillator model, a new method of self-consistent calculation of the ground-state energy and the density of a Bose condensate has been proposed. The model of suppression of a Bose condensate has been presented.

References

E.A. Pashitskii, S.V. Mashkevich, and S.I. Vilchynskyy, Phys. Rev. Lett. 89, 075301 (2002).

https://doi.org/10.1103/PhysRevLett.89.075301

E.A. Pashitskii, Low Temp. Phys. 25, 81 (1999).

https://doi.org/10.1063/1.593709

Yu.A. Nyepomnyashchi and E.A. Pashitskii, JETP 98, 178 (1990).

S.I. Shevchenco, Low Temp. Phys. 11, 339 (1985).

R. Feynman, Phys. Rev. 94, 262 (1954)

https://doi.org/10.1103/PhysRev.94.262

R. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

https://doi.org/10.1103/PhysRev.102.1189

N.N. Bogolyubov and D.N. Zubarev, JETP, 28, 129 (1955).

https://doi.org/10.1016/S0016-5085(55)80073-X

I.A. Vakarchuk and I.R. Yukhnovsky, Teoret. Mat. Fiz. 18, 90 (1974).

I.A. Vakarchuk and, I.R. Yukhnovsky, Teoret. Mat. Fiz. 42, 112 (1980).

M.D. Tomchenko, Ukr. J. of Phys. 50, 722 (2005).

S. Sunakawa, S. Yamasaki, and T. Kebukawa, Progr. Theor. Phys. 41, 919 (1969); 44, 565 (1970); 54, 565 (1975).

https://doi.org/10.1143/PTP.41.919

Deok Kyo Lee, Phys. Rev. 162, 134 (1967).

https://doi.org/10.1103/PhysRev.162.134

G.S. Grest and A.K. Rajagopal, Phys. Rev. A 10, 1395 (1974); 10, 1837 (1974).

https://doi.org/10.1103/PhysRevA.10.1395

S.A. Vitiello, K.J. Runge, G.V. Chester, and M.H. Kalos, Phys. Rev. B 42, 228 (1990).

https://doi.org/10.1103/PhysRevB.42.228

A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1971).

https://doi.org/10.1103/PhysRevA.5.399

L.P. Pitaevskii, JETP 36, 1168 (1959).

A.F. Andreev and I.M. Lifshitz, JETP 56, 2057 (1969).

D.E. O'Reilly and T. Tsang, Phys. Rev. B 19, 5634 (1979).

https://doi.org/10.1103/PhysRevB.19.5634

P.I. Fomin and A.P. Fomina, Ukr. J. Phys. 50, A72 (2005).

J.P. Straley, Phys. Rev. A 10, 1395 (1974); 6, 498 (1972).

https://doi.org/10.1103/PhysRevA.6.498

I.A. Vakarchuk, Teoret. Mat. Fiz. 80, 439 (1989).

I.A. Vakarchuk, Teoret. Mat. Fiz. 82, 438 (1990).

I.A. Vakarchuk and I.R. Yukhnovsky, Teoret. Mat. Fiz. 40, 100 (1979).

I.O. Vakarchuk, Quantum mechanics (Lviv National Univ., Lviv, 2007).

I.O. Vakarchuk, Introduction into the Many-Body Problem: a Manual (Lviv Univ. Press, Lviv, 1999).

I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Microscopic Theory of Phase transitions in the Three-Dimensional System (Eurosvit, Lviv, 2001).

E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981).

Y.B. Levinson and E.I. Rashba, Physics-Uspekhi 111, 683 (1973).

https://doi.org/10.3367/UFNr.0111.197312d.0683

R.J. Donnelly, J.A. Donnelly, and R.N. Hills, J. of Low Temp. Phys. 44, 471 (1981).

https://doi.org/10.1007/BF00117839

K.V. Grigorishin and B.I. Lev, Ukr. J. Phys. 53, 645 (2008)

K.V. Grigorishin and B.I. Lev, Ukr. J. Phys. 54, 808 (2009).

H.R. Glyde, R.T. Azuah, and W.G. Stirling, Phys. Rev. B 62, 14337 (2000).

https://doi.org/10.1103/PhysRevB.62.14337

A.F.G. Wyatt, Nature 391, 56 (1998).

https://doi.org/10.1038/34134

S.M. Stishov, Physics-Uspekhi 47, 789 (2004).

https://doi.org/10.1070/PU2004v047n08ABEH001850

Downloads

Published

2022-02-03

How to Cite

Grigorishin, K., & Lev, B. (2022). Self-Consistent Microscopic Model of the Energy Spectrum of Superfluity 4He with the Hermitian Form of the Bogolyubov–Zubarev Hamiltonian. Ukrainian Journal of Physics, 56(11), 1182. https://doi.org/10.15407/ujpe56.11.1182

Issue

Section

Soft matter

Most read articles by the same author(s)