Peculiarities of Photoluminescence Excitation in ZnO Ceramics Doped with Group-I Elements

Authors

  • N. Korsunska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • I. Markevich V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • T. Stara V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • K. Kozoriz V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • L. Melnichuk Mykola Gogol State University of Nizhyn
  • O. Melnichuk Mykola Gogol State University of Nizhyn
  • L. Khomenkova V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine, National University of Kyiv-Mohyla Academy

DOI:

https://doi.org/10.15407/ujpe67.3.209

Keywords:

zinc oxide, ceramics, doping, photoluminescence

Abstract

Extrinsic luminescence, excitation, and absorption spectra of ZnO ceramics doped with acceptors (lithium, copper, or silver), as well as undoped ZnO ceramics sintered in various atmospheres, have been studied. It is shown that the acceptor doping leads to the appearance of luminescence bands in the visible spectral interval, and their intensity significantly exceeds the intensity of the corresponding emission from undoped specimens. A selective maximum at 390–400 nm, which is usually absent in the excitation spectra of self-activated luminescence bands in undoped ZnO specimens, is found to dominate in the excitation spectra of those bands. It is supposed to be caused by the interaction between the emitting centers and defects arising near the impurities, with the Auger process being the most probable mechanism of energy transfer from these defects to the emitting centers. By sintering ZnO ceramics in the presence of carbon, it is shown that the appearance of the selective maximum in the excitation spectra occurs due to the extraction of oxygen from ZnO ceramics. An assumption has been done concerning the nature of the centers responsible for the excitation of extrinsic luminescence.

References

¨U. Ozg¨ur, Ya.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do˘gan, V. Avrutin, S.-J. Cho, H. Morko¸c. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

https://doi.org/10.1063/1.1992666

M.G. Wardle, J.P. Goss, P.R. Briddon. Theory of Li in ZnO: A limitation for Li-based p-type doping. Phys. Rev. B 71, 155205 (2005).

https://doi.org/10.1103/PhysRevB.71.155205

C. Rauch, W. Gehlhoff, M.R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz, Y. Aksu, M. Driess. Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals. J. Appl. Phys. 107, 024311 (2010).

https://doi.org/10.1063/1.3275889

V.I. Kushnirenko, I.V. Markevich, T.V. Zashivailo. Acceptors related to group-I elements in ZnO ceramics. J. Luminesc. 132, 1953 (2012).

https://doi.org/10.1016/j.jlumin.2012.03.029

N. Ohashi, N. Ebisawa, T. Sekiguchi, I. Sakaguchi, Yo. Wada, T. Takenaka, H. Haneda. Yellowish-white luminescence in codoped zinc oxide. Appl. Phys. Lett. 86, 091902 (2005).

https://doi.org/10.1063/1.1871349

D.Y. Wang, J. Zhou, G.Z. Liu. Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol-gel method. J. Alloy. Compd. 48, 802 (2009).

https://doi.org/10.1016/j.jallcom.2009.03.111

P. Chand, A. Gaur, A. Kumar, U.K. Gaur. Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition. Ceram. Int. 40, 11915 (2014).

https://doi.org/10.1016/j.ceramint.2014.04.027

I.V. Markevich, T.R. Stara, V.O. Bondarenko. Influence of Mg content on defect-related luminescence of undoped and

doped wurtzite MgZnO ceramics. Semicond. Phys. Quant. Electr. Optoelectr. 18, 344 (2015).

https://doi.org/10.15407/spqeo18.03.344

E. Tomzig, R. Helbig. Bandedge emission in ZnO. J. Luminesc. 14, 403 (1976).

https://doi.org/10.1016/S0022-2313(76)91392-2

V.V. Dyakin, E.A. Sal'kov, V.A. Khvostov, M.K. Sheinkman. Auger mechanism of interaction between luminescence centers and donor-acceptor pairs in cadmium sulfide. Sov. Phys. Semicond. 10, 1357 (1976).

N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Yu. Khomenkova, V.I. Kushnirenko, I.V. Markevich. The influence of defect drift in external electric field on green luminescence of ZnO single crystals. J. Luminesc. 102-103, 733 (2003).

https://doi.org/10.1016/S0022-2313(02)00634-8

H. Zeng, G. Duan , Y. Li , S. Yang ,X. Xu , W. Cai. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561 (2010).

https://doi.org/10.1002/adfm.200901884

D.V. Gulyaev, T.V. Perevalov, V.Sh. Aliev, K.S. Zhuravlev, V.A. Gritsenko, A.P. Eliseev, A.V. Zablotskii. Origin of the blue luminescence band in zirconium oxide. Phys. Solid State 57, 1347 (2015).

https://doi.org/10.1134/S1063783415070148

Published

2022-05-19

How to Cite

Korsunska, N., Markevich, I., Stara, T., Kozoriz, K., Melnichuk, L., Melnichuk, O., & Khomenkova, L. (2022). Peculiarities of Photoluminescence Excitation in ZnO Ceramics Doped with Group-I Elements. Ukrainian Journal of Physics, 67(3), 209. https://doi.org/10.15407/ujpe67.3.209

Issue

Section

Semiconductors and dielectrics