Oscillators in the Framework of Unified (q, α, β, γ, ν)-Deformation and Their Oscillator Algebras

Authors

  • I.M. Burban Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.4.396

Keywords:

-

Abstract

The aim of this paper is to review our results on the description of multiparameter deformed oscillators and their oscillator algebras. We define generalized (q; α, β, γ, ν)-deformed oscillator algebras and study their irreducible representations. The Arik–Coon oscillator with the main relation aa+qa+a = 1, where q >1, is embedded in this framework. We have found the connection of this oscillator with the Askey q1-Hermite polynomials. We construct a family of generalized coherent states associated with these polynomials and give their explicit expression in terms of standard special functions. By means of the solution of the appropriate classical Stieltjes moment problem, we prove the property of (over)completeness of these states.

References

M. Arik and D.D. Coon, J. Math. Phys. 17, 524 (1976).

https://doi.org/10.1063/1.522937

L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989).

https://doi.org/10.1088/0305-4470/22/18/004

A.J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989).

https://doi.org/10.1088/0305-4470/22/21/020

R. Chakrabarty and R.J. Jagannathan, J. Phys. A: Math. Gen. 24, L711 (1991).

https://doi.org/10.1088/0305-4470/24/13/002

S. Jing, Nuovo Cim. A 105, 1267 (1992).

https://doi.org/10.1007/BF02731001

I.M. Burban and A.U. Klimyk, Integr. Transform. Spec. Funct. 2, 15 (1994).

https://doi.org/10.1080/10652469408819035

M. Arik, E. Demircan, T. Turgut, and L. Ekinci, and M. Mungan, Z. Phys. C 55, 89 (1992).

https://doi.org/10.1007/BF01558292

J. Ben Geloun, and M.N. Hounkonnou, J. Phys. A: Math. Theor. 40, F817 (2007).

https://doi.org/10.1088/1751-8113/40/33/F01

Chung, K.-S. Chung, S.-T. Nam, and C.-I. Um, Phys. Lett. A 183, 363 (1993).

https://doi.org/10.1016/0375-9601(93)90589-R

V.V. Borzov, E.V. Damaskinsky, and S.V. Yegorov, Some remarks on the representations of the generalized deformed algebra, q-alg/9509022.

I.M. Burban, Phys. Lett. A 366, 308 (2007).

https://doi.org/10.1016/j.physleta.2007.02.051

S.S. Mizrahi, J.P. Lima, and V.V. Dodonov, J. Phys. A: Math. Gen. 37, 3707 (2004).

https://doi.org/10.1088/0305-4470/37/11/012

I.M. Burban, Mod. Phys. Lett. A 25, 1239 (2010).

https://doi.org/10.1142/S0217732310033050

I.M. Burban, J. Phys. A: Math. Gen. 43, 305204 (2010).

https://doi.org/10.1088/1751-8113/43/30/305204

N. Reshetikhin, Lett. Math. Phys. 20, 321 (1990).

https://doi.org/10.1007/BF00626529

CZ T.L. Curtright and C.K. Zachos, Phys. Lett. B 243, 237 (1990).

https://doi.org/10.1016/0370-2693(90)90845-W

A.P. Polychronacos, Mod. Phys. Lett. A 5, 2325 (1990).

https://doi.org/10.1142/S0217732390002675

D.F. Walls and G.J. Milburn, Quantum Optics (Springer, Berlin, 1994).

https://doi.org/10.1007/978-3-642-79504-6

M.A. Vasiliev, Int. J. Mod. Phys. A 6, 1115 (1991).

https://doi.org/10.1142/S0217751X91000605

L. Brink, T.H. Hanson, and M.A. Vasiliev, Phys. Lett. 286, 109 (1992).

https://doi.org/10.1016/0370-2693(92)90166-2

C. Quesne and N. Vanstineekiste, C_λ-extended oscillator algebras and some of their deformation, math-ph/0003025.

J. Engquist, Anyons, deformed oscillator algebras and projectors hep-th/0809.3226 v 1.

T. Brzezinski, I.L. Egusquiza, and A. Macfarlane, Phys. Lett. B 276, 10 (1992).

K. Odaka, T. Kishi, and S.J. Kamefuchi, J. Phys. A: Math. Gen. 24, L591 (1991).

https://doi.org/10.1088/0305-4470/24/11/004

C.J. Daskaloyannis, J. Phys. A 24, L789 (1991).

https://doi.org/10.1088/0305-4470/24/15/001

S. Meljanac, M. Milekovic, and S. Pallua, Phys. Lett. 11, 3081 (1996).

https://doi.org/10.1142/S0217732396003064

F.J. Calogero, Math. Phys. 10, 2191 (1969).

https://doi.org/10.1063/1.1664820

I.M. Burban, J. Phys. A: Math. Gen. 42, 065201 (2009).

https://doi.org/10.1088/1751-8113/42/6/065201

G. Rideau, Lett. Math. Phys. 24, 147 (1992).

https://doi.org/10.1007/BF00402678

H. Chaichian and P.J. Grosse, J. Phys. A: Math. Gen. 27, 2045 (1994).

https://doi.org/10.1088/0305-4470/27/6/027

C. Quesne and N. Vanstineekiste, Representation theory of generalized oscillator algebras, q-alg/9701031.

P. Kosinski, M. Majevski, and P. Maslianka, Representation of generalized oscillator algebra, q-alg/9501012.

V.V. Borzov, and E.V. Damaskinsky, Zap. Nauchn. Sem. ROMI 308, 48 (2004).

I.M. Burban and A.U. Klimyk, Lett. Math. Phys. 29, 13 (1993).

https://doi.org/10.1007/BF00760854

R.A. Askey, in q-Series and Partitions, edited by D. Stanton (Springer, New York, 1989), p. 151.

https://doi.org/10.1007/978-1-4684-0637-5_12

Yu.M. Berezansky, Expansions in Eigenfunctions of Self-Adjoint Operators (Amer. Math. Soc., Providence, RI, 1969).

M.E.H. Ismail and D.R. Masson, Trans. Amer. Math. Soc. 346, 43 (1994).

https://doi.org/10.1090/S0002-9947-1994-1264148-6

R. Koekoek and R.F. Swarttouw, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-analogue (Delft University of Technology, Report 98-17, 1998).

G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge Univ. Press, Cambridge, 1990).

J. Ben Geloun and M.N. Hounkonnou, J. Math. Phys. 48, 093505 (2007).

https://doi.org/10.1063/1.2779953

E.H. El Kinani and A. Ouhadon, Int. J. Algebra. 2, 751 (2008).

A. Aleixo and A.B. Balatekin, J. Math. Phys. 50, 112103 (2009).

https://doi.org/10.1063/1.3256128

M.N. Hounkonnou and E.B.N. Nkouankam, J. Math. Phys. 51, 103517 (2010).

https://doi.org/10.1063/1.3498685

A.M. Gavrililk, I.I. Kachurik, and A.P. Rebesh, J. Phys. A: Math. Theor. 43, 245294 (2010).

https://doi.org/10.1088/1751-8113/43/24/245204

A.M. Gavrililk and A.P. Rebesh, J. Phys. A: Math. Theor. 43, 095203 (2010).

https://doi.org/10.1088/1751-8113/43/9/095203

Downloads

Published

2012-04-30

How to Cite

Burban, I. (2012). Oscillators in the Framework of Unified (q, α, β, γ, ν)-Deformation and Their Oscillator Algebras. Ukrainian Journal of Physics, 57(4), 396. https://doi.org/10.15407/ujpe57.4.396

Issue

Section

General problems of theoretical physics