Spectrum of Radiation from a Gaussian Source Microlensed by a Point Mass: Analytic Results

Authors

  • V.I. Zhdanov Taras Shevchenko National University of Kyiv, Astronomical Observatory
  • D.V. Gorpinchenko National Technical University of Ukraine "Kyiv Polytechnic Institute"

DOI:

https://doi.org/10.15407/ujpe57.10.1083

Keywords:

-

Abstract

Gravitational lensing deals with general-relativistic effects in the propagation of electromagnetic radiation. We consider wavelength-dependent  contributions in case of a (micro)lensing of an extended Gaussian source by a point mass under standard assumptions about the incoherent emission of different source elements. Analytical expressions for the power spectrum of a microlensed radiation, which are effective in case of a large source, are obtained. If the source center, the mass, and an observer are on a straight line, the power spectrum is found in a closed form in terms of a hypergeometric function. In the case of general locations of the lens and the source, the result is presented in the form of a series. Approximate analytic expressions for the power spectrum in the case of a large source and high frequencies are obtained.

References

A.N. Alexandrov, V.M. Sliusar, V.I. Zhdanov, Ukr. J. Phys. 56, 389 (2011).

G. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

P.V. Bliokh and A.A. Minakov, Gravitational Lenses (Naukova Dumka, Kiev, 1980) (in Russian).

E.F. Borra, MNRAS 289, 660 (1997).

https://doi.org/10.1093/mnras/289.3.660

E.F. Borra, MNRAS 389, 364 (2008).

https://doi.org/10.1111/j.1365-2966.2008.13568.x

E.F. Borra, MNRAS 411, 1695 (2011).

https://doi.org/10.1111/j.1365-2966.2010.17798.x

D. Clowe, M. Bradac, A. Gonzalez et al., ApJ. 648, L109 (2006).

https://doi.org/10.1086/508162

S. Deguchi and W.D. Watson, AJ 307, 30 (1986).

https://doi.org/10.1086/164389

I.S. Gradshtein and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980).

J.S. Heyl, MNRAS Lett. 402, L39 (2010).

https://doi.org/10.1111/j.1745-3933.2009.00795.x

J.S. Heyl, MNRAS 411, 1780 (2011).

https://doi.org/10.1111/j.1365-2966.2010.17806.x

M. Jaroszyński and B. Paczyński, ApJ 455, 443 (1995).

https://doi.org/10.1086/176593

Gravitational Lensing: Strong, Weak & Micro, edited by C.S. Kochanek, P. Schneider, and J. Wambsganss (Springer, Berlin, 2006).

L.D Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).

M.B. Vinogradova, O.V. Rudenko, and A.P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1990) (in Russian).

A.V. Mandzhos, Pis'ma Astr. Zh. 7, 387 (1981).

A.V. Mandzhos, Pis'ma Astr. Zh. 16, 598 (1990).

A.V. Mandzhos, Astr. Zh. 68, 22 (1991).

https://doi.org/10.1080/02331889108802285

A.V. Mandzhos, Astr. Zh. 68, 236 (1991).

A.V. Mandzhos, Astr. Zh. 72, 153 (1995).

N. Matsunaga and K. Yamamoto, JCAP 01, 023 (2006).

https://doi.org/10.1088/1475-7516/2006/01/023

A.A. Minakov and V.G. Vakulik, Statistical Analysis of Gravitation Microlensing (Naukova Dumka, Kiev, 2010) (in Russian).

P. Schneider, J. Ehlers, and E.E. Falko, Gravitational Lenses (Springer, New York, 1992).

https://doi.org/10.1007/978-3-662-03758-4

P. Schneider and J. Schmid-Burgk, A&A 148, 369 (1985).

https://doi.org/10.1007/978-3-322-85518-3_22

K.Z. Stanek, B. Paczynski, and J. Goodman, ApJ 413, L7 (1993).

https://doi.org/10.1086/186946

R. Takahashi, T. Suyama, and S. Michikoshi, A&A 438, L5 (1993).

https://doi.org/10.1051/0004-6361:200500140

P. Tisserand, L. Le Guillou, C. Afonso et al., A&A 469, 387 (2007).

T.S. Vovkogon and V.I. Zhdanov, Visnyk Kyiv. Univ. Astron. 45, 8 (2009).

J. Wambsganss, in: Gravitational Lensing: Strong, Weak & Micro, edited by C.S. Kochanek, P. Schneider, and J. Wambsganss, (Springer, Berlin, 2006), p. 453.

https://doi.org/10.1007/978-3-540-30310-7_4

L. Wyrzykowski, J. Skowron, S. Kozlowski et al., MNRAS 416, 2949 (2011).

https://doi.org/10.1111/j.1365-2966.2011.19243.x

S.A. Zabel and J.B. Peterson, ApJ 594, 456 (2003).

https://doi.org/10.1086/376896

A.F. Zakharov and A.V. Mandzhos, Zh. Eksp. Teor. Fiz. 77, 529 (1993).

V.I. Zhdanov, Astr. Lett. 25, 793 (1999).

Published

2021-12-05

How to Cite

Zhdanov В., & Gorpinchenko Д. (2021). Spectrum of Radiation from a Gaussian Source Microlensed by a Point Mass: Analytic Results. Ukrainian Journal of Physics, 57(10), 1083. https://doi.org/10.15407/ujpe57.10.1083

Issue

Section

Astrophysics and cosmology

Most read articles by the same author(s)