General Properties of Higher-Spin Fermion Interaction Currents and Their Test in πN-Scattering

Authors

  • Yu.V. Kulish Ukrainian State Academy of Railway Transport
  • E.V. Rybachuk Ukrainian State Academy of Railway Transport

DOI:

https://doi.org/10.15407/ujpe57.11.1179

Keywords:

-

Abstract

The currents of higher-spin fermion interactions with zero- and half-spin particles are derived. They can be used for the N*(J) ↔ Nπ-transitions (N*(J) is the
nucleon resonance with the J spin). In accordance with the theorem on currents and fields, the spin-tensors of these currents are traceless, and their products with the γ-matrices and the higher-spin fermion momentum vanish, similarly to the field spin-tensors. Such currents are derived explicitly for J=3/2
and 5/2. It is shown that, in the present approach, the scale dimension of a higher spin fermion propagator equals to –1 for any J ≥ 1/2. The calculations indicate that the off-mass-shell N* contributions to the s-channel amplitudes correspond to J = JπN only ( JπN is the total angular momentum of the πN-system). As contrast, in the usually exploited approaches, such non-zero amplitudes correspond to 1/2 ≤  JπNJ. In particular, the usually exploited approaches give non-zero off-mass-shell contributions of the ∆(1232)-resonance to the amplitudes S31, P31( JπN = 1/2) and P33, D33(JπN = 3/2), but our approach – to P33 and D33 only. The comparison of these results with the data of the partial wave analysis on the S31-amplitude in the ∆(1232)-region shows the better agreement for the present approach.

References

L.P.S. Singh and C.R. Hagen, Phys. Rev. D 9, 898 (1974).

https://doi.org/10.1103/PhysRevD.9.898

C. Fronsdal, Phys. Rev. D 18, 3624 (1978).

https://doi.org/10.1103/PhysRevD.18.3624

J. Fang and C. Fronsdal, Phys. Rev. D 3630 (1978)

https://doi.org/10.1103/PhysRevD.18.3630

L.P.S. Singh, Phys. Rev. D 7, 1256 (1973).

https://doi.org/10.1103/PhysRevD.7.1256

B. de Wit and D.Z. Freedman, Phys. Rev. D 21, 358 (1982).

https://doi.org/10.1103/PhysRevD.21.358

Ph. Salin, Nuovo Cim. 32, 521 (1964).

https://doi.org/10.1007/BF02735880

S. Gasiorowicz, Elementary Particle Physics(Wiley, New York, 1967).

S. Weinberg, Phys. Rev. B 133, 1318 (1964).

https://doi.org/10.1103/PhysRev.133.B1318

M.D. Scadron, Phys. Rev. 165, 1640 (1968).

https://doi.org/10.1103/PhysRev.165.1640

V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Currents in Hadron Physics (North-Holland, Amsterdam, 1973).

Yu.V. Novozhilov, Introduction to Elementary Particle Theory [in Russian] (Nauka, Moscow, 1972).

A.E. Kaloshin and V.P. Lomov, Yad. Fiz. 69, 563 (2006).

https://doi.org/10.1134/S1063778806030161

M.A. Vasiliev, Phys. Usp. 46, 218 (2003).

https://doi.org/10.1070/PU2003v046n02ABEH001356

I. Bandos, X. Be Kaert, J.A. de Azcarraga, D.P. Sorokin, and M. Tsulain, arXiv: hep-th/0501113, v. 1, 14 Jan 2005.

V.G. Zima and S.O. Fedoruk, Class. Quantum Grav. 16, 3653 (1999).

https://doi.org/10.1088/0264-9381/16/11/312

Yu.V. Kulish, Yad. Fiz. 50, 1697 (1989).

Yu.V. Kulish and E.V. Rybachuk, Probl. Atom. Sci. Techn. 6 (1), 84 (2001).

Yu.V. Kulish and E.V. Rybachuk, J. of Kharkiv Nat. Univ., No. 585, Iss. 1, 49 (2003).

Yu. V. Kulish and E.V. Rybachuk, J. of Kharkiv Nat. Univ., No. 619, Iss. 1, 49 (2004).

E.V. Rybachuk, J. of Kharkiv Nat. Univ., No. 744, Iss. 3, 75 (2006).

E.V. Rybachuk, J. of Kharkiv Nat. Univ., No. 746, Iss. 4, 65 (2006).

Yu.V. Kulish and E.V. Rybachuk, Probl. Atom. Sci. Techn. No. 3 (1), 137 (2006).

Yu.V. Kulish, in High Energy spin Physics. Proc. of the 9th Int. Symp., Bonn, FRG, 1990 (Springer, Berlin, 1991), p. 600.

https://doi.org/10.1007/978-3-642-86995-2_79

Y.R. Kochand and E. Pietarinen, Nucl. Phys. A 336, 331 (1980).

https://doi.org/10.1016/0375-9474(80)90214-6

R.A. Arndt, J.M. Ford, and L.D. Roper, Phys. Rev. D 32, 1085 (1985).

https://doi.org/10.1103/PhysRevD.32.1085

R.E. Cutkosky, C.P. Forsyth, and R.E. Hendrick, Phys. Rev. D 20, 2839 (1979).

https://doi.org/10.1103/PhysRevD.20.2839

R.A. Arndt, Zhujun Li, L.D. Roper et al., Phys. Rev. D 43, 2131 (1991).

https://doi.org/10.1103/PhysRevD.43.2131

R.A. Arndt, I. Strakovsky, R.J. Workman, and M.M. Pavan, Phys. Rev. C 52, 2120 (1995). 29Particle Data Group, Phys. Lett. 667, 1 (2008).

https://doi.org/10.1103/PhysRevLett.32.31

Downloads

Published

2021-12-03

How to Cite

Kulish, Y., & Rybachuk, E. (2021). General Properties of Higher-Spin Fermion Interaction Currents and Their Test in πN-Scattering. Ukrainian Journal of Physics, 57(11), 1179. https://doi.org/10.15407/ujpe57.11.1179

Issue

Section

Astrophysics and cosmology