Surface Diffusion and Phase Transitions in Adsorbed Copper Films on (112) Tungsten Face

Authors

  • A.T. Loburets National University “Yuri Kondratyuk Poltava Polytechnic”, Educational and Scientific Institute of Oil and Gas
  • S.O. Zayika National University “Yuri Kondratyuk Poltava Polytechnic”, Educational and Scientific Institute of Information Technologies and Robotics

DOI:

https://doi.org/10.15407/ujpe67.8.619

Keywords:

metals, single crystals, surface diffusion, adsorption, vapor-liquid equilibrium, two-dimensional system, thermodynamic similarity

Abstract

An experimental study of the vapor-liquid equilibrium in a two-dimensional (2D) adsorbed Cu film on the (112)W face is performed in a wide temperature range for the first time. Critical characteristics are determined. The area of coexistence of phases is established. It is shown that the features of the “liquid–gas” phase transition in the 2D system of Cu–(112)W are similar to the transitions in three-dimensional (3D) systems of Rb and Cs. The reasons for the thermodynamic similarity of 2D and 3D metallic systems are discussed. Analytical expressions for the approximation of experimental data are proposed. They determine the limits of the existence of vapor-liquid equilibrium and allow a high-precision extrapolation to the regions of critical and triple points. The coordinates of the points on the liquid and gas branches of the binodals are determined on the basis of the analysis of diffusion-formed concentration profiles.

References

S. Jungst, B. Knuth, F. Hensel. Observation of singular diameters in the coexistence curves of metals. Phys. Rev. Lett. 55, 2160 (1985).

https://doi.org/10.1103/PhysRevLett.55.2160

F. Hensel, G.F. Hohl, D. Schaumloffel, W.C. Piligrim. Empirical regularities in the behaviour of the critical constants of fluid alkali metals.Zeitschrift fur Physikalische Chemie 214, 823 (2000).

https://doi.org/10.1524/zpch.2000.214.6.823

A. Schmon, K. Aziz, G. Pottlacher. Density determination of liquid metals by means of container less techniques. Metallurgical and Materials Transactions A 46, 2674 (2015).

https://doi.org/10.1007/s11661-015-2844-1

A.A. Likal'ter. Critical points of the condensation in Coulomb systems. Usp. Fiz. Nauk 170, 831 (2000).

https://doi.org/10.3367/UFNr.0170.200008b.0831

L.K. Alexander, A.L. Khomkin, A.S. Shumikhin. The thermodynamics and transport properties of transition metals in critical point. High Temp. - High Pres. 46, 367 (2017).

D.Yu. Ivanov. Critical Behavior of Nonidealized Systems (Fiznatlit, 2003) [ISBN: 5-9221-0319-9].

L.A. Bulavin, V.L. Kulinskii, N.P. Malomuzh. Singularity of binodal diameter in entropy-temperature terms for atomic and molecular liquids. Ukr. J. Phys. 55, 1282 (2010).

Y.C. Kim, M.E. Fisher. Singular coexistence-curve diameters: Experiments and simulations. Chem. Phys. Lett. 414, 185 (2005).

https://doi.org/10.1016/j.cplett.2005.07.105

J. Wang, M.A. Anisimov. Nature of vapor-liquid asymmetry in fluid criticality. Phys. Rev. E 75, 051107 (2007).

https://doi.org/10.1103/PhysRevE.75.051107

F. Hensel. The Metal-nonmetal transition in fluid mercury: Landau-Zeldovich revisited. Metal-to-Nonmetal Transitions 132, 23 (2010).

https://doi.org/10.1007/978-3-642-03953-9_2

A.L. Khomkin, A.S. Shumikhin. Critical points of metal vapors. JETP 121, 521 (2015).

https://doi.org/10.1134/S1063776115090162

F. Hensel, J. Jortner. The role of clustering in the liquidvapor transition of mercury. Z. Phys. Chem. 228, 329 (2014).

https://doi.org/10.1515/zpch-2014-0515

I.N. Yakovkin. Metallicity of atomic wires. Appl. Surf. Sci. 252, 6127 (2006).

https://doi.org/10.1016/j.apsusc.2006.05.016

S. Reif-Acherman. The history of the rectilinear diameter law. Quim. Nova 33, 2003 (2010).

https://doi.org/10.1590/S0100-40422010000900033

S.M. Walas. Phase Equilibria in Chemical Engineering (Univ. of Kansas, 1985) [ISBN: 5-03-001106-4].

C. Guder, W. Wagner. Reference equation of state for the thermodynamic properties of Sulfur Hexafluoride (SF6) for temperatures from the melting line to 625 K and pressures up to 150 MPa. J. Phys. Chem. Ref. Data 38, 33 (2010).

https://doi.org/10.1063/1.3037344

V.N. Ryzhov, E.E. Tareyeva, Yu.D. Fomin, E.N. Tsiok. Berezinskii-Kosterlitz-Thouless transition and twodimensional melting. Physics-Uspekhi 60, 9 (2017).

https://doi.org/10.3367/UFNe.2017.06.038161

G.A. Martynov. The functional theory of fluids. Teplofiz. Vysok. Temper. 56, 353 (2018).

https://doi.org/10.1134/S0018151X18030148

K. Maruyama, H. Endo, H. Hoshino, F. Hensel. Void structure and intermediate-range fluctuations in the metalnonmetal transition range in expanded liquid Hg. Phys. Rev. B 80, 014201 (2009).

https://doi.org/10.1103/PhysRevB.80.014201

P. Debye, H. Menke. Bestimmung der inneren struktur von ussigkeiten mit rontgenstrahlen. Physikal. Zeits 31, 797 (1930).

E.L. Meyer, W. Ramm. Die struktur der rayleigh-strahlung. Physikalische Zeitschrift 33, 270 (1932).

A.G. Naumovets. Adsorption of alkali and other electropositive metals. Surface and Interface Science 5, 157 (2016).

https://doi.org/10.1002/9783527680573.ch34

O.M. Braun, V.K. Medvedev. The interaction of particles adsorbed on the surface of metals. Usp. Fiz. Nauk 157, 631 (1989).

https://doi.org/10.3367/UFNr.0157.198904c.0631

A. Fedorus, D. Kolthoff, V. Koval, I. Lyuksyutov, A. Naumovets, H. Pfnur. Phase transitions in the adsorption system Li/Mo(112). Phys. Rev. B 62, 2852 (2000).

https://doi.org/10.1103/PhysRevB.62.2852

A.G. Naumovets, Yu.S. Vedula. Surface diffusion of adsorbates. Surf. Sci. Rep. 4, 365 (1985).

https://doi.org/10.1016/0167-5729(85)90007-X

D.P. Woodruff, T.A. Delchar. Modern Techniques of Surface Science (Cambridge Univ. Press,1994) [ISBN: 5-03-001129-3].

https://doi.org/10.1017/CBO9780511623172

M. Inui, D. Ishikawa, K. Matsuda, K. Tamura, A.Q.R. Baron. Experimental techniques of high-resolution inelastic X-ray scattering measurements for supercritical metallic fluids at high temperature and high pressure using synchrotron radiation at SPring-8. Conden. Mat. Phys. 53, 83 (2008).

https://doi.org/10.5488/CMP.11.1.83

Y. Waseda. The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGrawпїЅHill, 1980) [ISBN: 9780070684263, 007068426X].

M.W. Pestak, R.E. Goldstein, M.H.W. Chan, J.R. de Bruyn, D.A Balzarini, N.W. Ashcroft. Three - body interactions, scaling variables, and singular diameters ln the coexistencecurves of fluids. Phys. Rev. B 36, 599 (1987).

https://doi.org/10.1103/PhysRevB.36.599

J. Sliwinski, M. Wiejak, J. Kolaczkiewicz, I.N. Yakovkin. Indirect interaction in Ag and Pd adsorbed layers on the Mo(112) surface. Appl. Surf. Sci. 265, 615 (2012).

https://doi.org/10.1016/j.apsusc.2012.11.060

J. Kolaczkiewicz, E. Bauer. Temperature dependence of the work function of adsorbate covered metal surfaces: a new method for the study of two-dimensional phase transitions. Phys. Rev. Lett. 53, 485 (1984).

https://doi.org/10.1103/PhysRevLett.53.485

E. Bauer. Phase transitions in metals on metals. Appl. Surf. Sci. 51, 71 (1990).

https://doi.org/10.1007/BF00324268

A.T. Loburets, N.B. Senenko, A.G. Naumovets, Yu.S. Vedula. Surface diffusion of strontium on the molybdenum (112) plane. Phys. Low-Dim. Struct. 10/11, 49 (1995).

A.T. Loburets. Surface diffusion and phase transitions in copper overlayers on the (112) surfaces of molybdenum and tungsten. Metallofiz. Noveishie Tekhnol. 2, 47 (1999).

A.T. Loburets. An experimental technique for recording adsorbate surface concentration profiles based on local measurements of the contact potential. Metallofiz. Noveishie Tekhnol. 21, 43 (1999).

S.A. Zaika, A.T. Loburets, A.G. Naumovets. The Proceedings of 1-st International conference 'Nanomaterials: Applications and Properties (NAP-2011)' (Sumy State University, 2011).

I.F. Lyuksyutov, A.G. Naumovets, V.L. Pokrovsky, TwoDimensional Crystals (Academic Press, 1980) [ISBN: 0124605907].

Yu.S. Vedula, A.T. Laburets, I.F. Lyuksyutov, A.G. Naumovets, V.V. Poplavskii. Surface diffusion and interaction of adsorbed particles of electropositive elements on refractory metals. Kinet. Kataliz 31, 315 (1990).

O.M. Braun, Y.S. Kivshar. The Frenkel-Kontorova Model. Concepts, Methods, and Applications (Springer, 2004) [ISBN: 3540407715].

https://doi.org/10.1007/978-3-662-10331-9

Published

2022-12-04

How to Cite

Loburets, A., & Zayika, S. (2022). Surface Diffusion and Phase Transitions in Adsorbed Copper Films on (112) Tungsten Face. Ukrainian Journal of Physics, 67(8), 619. https://doi.org/10.15407/ujpe67.8.619

Issue

Section

Surface physics