Polarization and Pyroelectric Coefficients of Antiferrodistortive Boundaries: SrTiO3 as an Example

Authors

  • J.V. Jakovenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • E.A. Eliseev I.M. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • S.V. Svechnikov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A.N. Morozovska Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.12.1223

Keywords:

-

Abstract

The spatial distributions and the temperature dependences of a local polarization and the pyroelectric coefficient in a vicinity of antiferrodistortive boundaries in SrTiO3 at temperatures lower than that of the antiferrodistortive structural phase transition (≈105 K) have been studied analytically and numerically in the framework of the Landau–Ginsburg–Devonshire theory. The polarization in the near-wall region is supposed to emerge as a result of the flexoelectric field and the rotostriction.

References

A. Ohtomo, D.A. Muller, J.L. Grazul, and H.Y. Hwang, Nature,

, 378, (2002).

A. Ohtomo and H.Y. Hwang, Nature, 427, 423 (2004).

https://doi.org/10.1038/nature02308

J.W. Park et al., Nature Communications 1, 94 (2010).

https://doi.org/10.1016/j.morpho.2010.02.006

J. Seidel et al., Nature Materials 8, 229 (2009).

https://doi.org/10.1038/nmat2373

Ying-Hao Chu et al., Nature Materials 7, 478 (2008).

S. J. May et al., Nature Materials 8, 892 (2009).

https://doi.org/10.1038/nmat2557

M. Stengel, D. Vanderbilt, N.A. Spaldin, Nature Materials 8, 392 (2009).

https://doi.org/10.1038/nmat2429

A. Vasudevarao et al., Phys. Rev. Lett. 97, 257602 (2006).

https://doi.org/10.1103/PhysRevLett.97.257602

V. Gopalan and D.B. Litvin, Nature Materials 10, 376 (2011).

https://doi.org/10.1038/nmat2987

M.J. Haun, E. Furman, T.R. Halemane, and L.E. Cross, Ferroelectrics 99, 55 (1989), ibidem p. 13.

https://doi.org/10.1080/00150198908221439

A.K. Tagantsev, E. Courtens, and L. Arzel, Phys. Rev. B 64, 224107 (2001).

https://doi.org/10.1103/PhysRevB.64.224107

B. Houchmanzadeh, J. Lajzerowicz, and E. Salje, J. Phys. Condens. Matter. 3, 5163 (1991).

https://doi.org/10.1088/0953-8984/3/27/009

Sandra Van Aert, Stuart Turner, Remi Delville, Dominique Schryvers, Gustaaf Van Tendeloo, Ekhard K.H. Salje. DOI: 10.1002/adma.201103717.

https://doi.org/10.1002/adma.201103717

P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, and J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007).

https://doi.org/10.1103/PhysRevLett.99.167601

M.S. Majdoub, P. Sharma, and T. Cagin, Phys. Rev. B 77, 125424 (2008).

https://doi.org/10.1103/PhysRevB.77.125424

G. Catalan, B. Noheda, J. McAneney, L.J. Sinnamon, and J.M. Gregg, Phys. Rev B 72, 020102 (2005).

https://doi.org/10.1103/PhysRevB.72.020102

E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc Phys. Rev. B 79, No. 16, 165433-1-10, (2009).

https://doi.org/10.1103/PhysRevB.79.165433

D. Lee et al., Phys. Rev. Lett. 107, 057602 (2011).

J.H. Barrett, Phys. Rev. 86, 118 (1952).

https://doi.org/10.1103/PhysRev.86.118

P.A. Fleury, and J.M. Worlock, Phys. Rev. 174, 613 (1968).

https://doi.org/10.1103/PhysRev.174.613

Yijia Gu, Karin Rabe, Eric Bousquet, Venkatraman Gopalan, and Long-Qing, Chen. Phys. Rev. B 85, 064117 (2012).

Rakesh K. Behera et al., J. Phys. Condens. Matter. 23, 175902 (2011).

https://doi.org/10.1088/0953-8984/23/17/175902

A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, Long-Qing Chen, and Venkatraman Gopalan, Phys. Rev. B 85, 094107 (2012).

https://doi.org/10.1103/PhysRevB.85.094107

A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, Long-Qing Chen, and Venkatraman Gopalan, Appl. Phys. Lett. 100, 142902 (2012).

https://doi.org/10.1063/1.3701152

J. Groten, M. Zirkl, G. Jakopic, A. Leitner, and B. Stadlober, Phys. Rev. B 82, 054112 (2010).

https://doi.org/10.1103/PhysRevB.82.054112

A.N. Morozovska, E.A. Eliseev, S.L. Bravina, and S.V. Kalinin, Phys. Rev. B 75, 174109 (2007).

https://doi.org/10.1103/PhysRevB.75.174109

N. Tayebi, Y. Narui, R.J. Chen, C.P. Collier, K.P. Giapis, and Y. Zhang, Appl. Phys. Lett. 93, 103112 (2008).

https://doi.org/10.1063/1.2981641

S.V. Kalinin, A.N. Morozovska, L.Q. Chen, and B.J Rodriguez, Rep. Prog. Phys. 73, 056502 (2010).

https://doi.org/10.1088/0034-4885/73/5/056502

S.B. Lang, Physics Today, 58, No. 8, 31 (2005).

https://doi.org/10.1063/1.2062916

G. Rupprecht and R.O. Bell, Phys. Rev. 135, A748 (1964).

https://doi.org/10.1103/PhysRev.135.A748

0 G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N Krainik, R.E. Pasynkov, and A.I. Sokolov, Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).

N.A. Pertsev, A.K. Tagantsev, and N. Setter, Phys. Rev. B 61, R825 (2000).

https://doi.org/10.1103/PhysRevB.61.R825

J. Hlinka and P. Marton, Phys. Rev. B 74, 104104 (2006).

https://doi.org/10.1103/PhysRevB.74.104104

W. Cao and R. Barsch, Phys. Rev. B 41, 4334 (1990).

https://doi.org/10.1103/PhysRevB.41.4334

P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, and J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007).

https://doi.org/10.1103/PhysRevLett.99.167601

Published

2012-12-15

How to Cite

Jakovenko Я., Eliseev Є., Svechnikov С., & Morozovska Г. (2012). Polarization and Pyroelectric Coefficients of Antiferrodistortive Boundaries: SrTiO3 as an Example. Ukrainian Journal of Physics, 57(12), 1223. https://doi.org/10.15407/ujpe57.12.1223

Issue

Section

Solid matter