Influence of Ion Viscosity on the Distributions of Plasma Parameters in Stationary Gas Discharge

Authors

  • Ya.F. Leleko Institute of Plasma Physics, Nat. Sci. Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine, V.N. Karazin National University of Kharkiv
  • D.L. Grekov Institute of Plasma Physics, Nat. Sci. Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine, V.N. Karazin National University of Kharkiv

DOI:

https://doi.org/10.15407/ujpe66.4.316

Keywords:

stationary gas discharge, viscosity, transient layer, hydrodynamic approximation, Debye radius

Abstract

On the basis of hydrodynamic equations, the distributions of such plasma parameters as the electric potential, the ion and electron densities, and the ion fl ow velocity toward the wall in a plane layer of the stationary weakly ionized non-isothermal plasma confi ned between the dielectric walls have been obtained. The temperatures of ions and electrons, as well as the density of neutrals, are assumed to be constant. Instead of fi nding the eigenfunctions and eigenvalues of the described problem, the Cauchy problem is solved with the initial values corresponding to those that are in the plasma bulk. The wall position is determined from the balance condition for the ion and electron fl uxes. A method to avoid the singularity in the system of hydrodynamic equations has been proposed. The infl uence of the ion viscosity in the equation of ion motion was estimated. The distributions of plasma parameters are obtained considering the ion viscosity in a quasineutral region.

References

D.J. Bohm. Minimum ionic kinetic energy for a stable sheath. In: The Characteristics of Electrical Discharges in Magnetic Fields. Edited by A. Guthrie, R.K. Wakerling (McGraw Hill, 1949), p. 77.

I. Langmuir, L. Tonks. A general theory of the plasma of an arc. Phys. Rev. 34, 876 (1929).

https://doi.org/10.1103/PhysRev.34.876

W. Schottky. Wondstrem und theorie der positiven saule. Phys. Zeits. 25, 342 (1924).

K.B. Persson. Inertia controlled ambipolar diff usion. Phys. Fluids 5, 1625 (1962).

https://doi.org/10.1063/1.1706574

V.S. Golubev. Positive column of glow discharge and low-pressure arcs. In Electric Current in Gas. Steady-State Current. Edited by V.L. Granovskii (Nauka, 1971), p. 235 (in Russian).

I.D. Kaganovich. How to patch active plasma and collision-less sheath: practical guide. Phys. Plasmas 9, 4788 (2002).

https://doi.org/10.1063/1.1515274

K.-U. Riemann. The Bohm criterion and sheath formation. J. Phys. D 24, 493 (1991).

https://doi.org/10.1088/0022-3727/24/4/001

K.-U. Riemann, J. Seebacher, D.D. Tskhakaya, S. Kuhn. The plasma-sheath matching problem. Plasma Phys. Control. Fusion 47, 1949 (2005).

https://doi.org/10.1088/0741-3335/47/11/006

V.E. Golant, A.P. Zhilinskii, I.E. Sakharov. Fundamentals of Plasma Physics (Wiley, 1980).

A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov. Plasma Electrodynamics. Vols. 1 and 2 (Pergamon Press, 1975). https://doi.org/10.1016/B978-0-08-017783-0.50005-1

L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1993).

R.W.P. McWhirter. Spectral intensities. In Plasma Diagnostic Techniques. Edited by R.H. Huddlestone, S.L. Leonard. (Academic Press, 1965).

B.M. Smirnov. Physics of Weakly Ionized Gases (Problems and Solutions) (Mir, 1981).

Yu.M. Kagan, V.I. Perel. Probe methods of plasma research. Usp. Fiz. Nauk 81, 409 (1963) (in Russian). https://doi.org/10.3367/UFNr.0081.196311a.0409

R.N. Franklin, J.R. Ockerdon. Asymptotic matching of plasma and sheath inactive law pressure discharge. J. Plasma Phys. 4, 371 (1970). https://doi.org/10.1017/S0022377800005067

Published

2021-05-13

How to Cite

Leleko, Y., & Grekov, D. (2021). Influence of Ion Viscosity on the Distributions of Plasma Parameters in Stationary Gas Discharge. Ukrainian Journal of Physics, 66(4), 316. https://doi.org/10.15407/ujpe66.4.316

Issue

Section

Plasma physics

Most read articles by the same author(s)

  • O.S. Bakai, Yu.A. Berezhnoi, V.M. Beresnev, O.A. Bizyukov, V.A. Bilous, L.A. Bulavin, R.V. Vovk, I.Ye. Garkusha, I.O. Girka, D.L. Grekov, M.I. Gryshanov, I.B. Denysenko, I.M. Karnaukhov, V.O. Katrych, V.F. Klepikov, A.M. Kondratenko, O.Yu. Korchyn, V.M. Kuklin, V.T. Lazuryk, S.V. Lytovchenko, V.O. Lisovskyi, M.O. Mchedlov-Petrosyan, I.M. Neklyudov, V.P. Olefir, I.M. Onishchenko, V.G. Rudychev, V.I. Slisenko, Yu.V. Slyusarenko, V.Yu. Storyzhko, V.I. Tkachenko, V.O. Chyshkala, M.F. Shul’ga, A.G. Zagorodny, Mykola Oleksiyovych Azarenkov (to the 70th anniversary of his birth) , Ukrainian Journal of Physics: Vol. 67 No. 1 (2022)