Electron-Impact Ionization of the Glutamic Acid and Glutamine Molecules

Authors

  • A.M. Zavilopulo Institute of Electron Physics, National Academy of Sciences of Ukraine
  • S.S. Demes Institute for Nuclear Research (ATOMKI), Normandie University Le Havre, LOMC-UMR 6294 CNRS
  • E.Yu. Remeta Institute of Electron Physics, National Academy of Sciences of Ukraine
  • A.I. Bulhakova Institute of Electron Physics, National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.9.745

Keywords:

mass spectrum, amino acid, dissociative ionization, ionic fragment, ionization cross-section

Abstract

The yield of positive ions formed as a result of the electron-impact dissociative ionization of glutamic acid (Glu-Acid) and glutamine (Gln) molecules in the gaseous phase has been studied both experimentally and theoretically. The experiment was performed using an MX-7304A monopole mass spectrometer in a mass number interval of 10–150 Da. The mass spectra of Glu-Acid and Gln molecules at various temperatures and the dynamics of the ionic fragment yield in an interval of initial substance evaporation temperatures of 310–430 K were studied, and the specific features of the relevant ionic fragment formation at the electron impact were analyzed in detail. Ab initio calculations of ionization potentials for glutamic acid and glutamine molecules were performed in the adiabatic approximation and on the basis of binding energies for the HOMO and LUMO orbitals of neutral molecules. The cross-sections of the single-electron ionization of both molecules by the electron impact were calculated in the framework of the binary encounter Bethe model and using the Gryzi´nski formula. The calculated molecular constants were shown to agree well with the obtained experimental data.

References

H.-D. Jakubke, H. Jeschkeit. Aminosauren, Peptide, Proteine (Chemie, 1982).

O.V. Smirnov, A.A. Basalajev, V.M. Boitsov, S.Yu. Viaz'-min, A.L. Orbeli, M.V. Dubina. Fragmentation of D- and

L-enantiomers of amino acids through interaction with 3He2+ ions. Techn. Phys. 84, No. 11, 121 (2014).

L. Sanche. Interaction of low energy electrons with DNA: Applications to cancer radiation therapy. Radiat. Phys. Chem. 128, 36 (2016).

https://doi.org/10.1016/j.radphyschem.2016.05.008

C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, A.D. Daniels, S. Jervey, D. Albaiu. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci. 6, 315 (2020).

https://doi.org/10.1021/acscentsci.0c00272

A.M. Baig, A. Khaleeq, U. Ali, H. Syeda. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995 (2020).

https://doi.org/10.1021/acschemneuro.0c00122

I.I. Fabrikant, S. Eden, N.J. Mason, J. Fedor. Recent progress in dissociative electron attachment: From diatomics to biomolecules.. Adv. At. Mol. Opt. Phys. 66, 546 (2017).

https://doi.org/10.1016/bs.aamop.2017.02.002

C.M. Jones, M. Brenier, E. Carson, K.E. Colyer, R. Metz, A. Pawlow, E.D. Wischow, I.K. Webb, E.J. Andriole, J.C. Poutsma. Gas-phase acidities of the 20 protein amino acids. Int. J. Mass Spectrom. 267, No. 27, 54 (2007).

https://doi.org/10.1016/j.ijms.2007.02.018

J. Bonner, Y.A. Lyon, C. Nellessen, R.R. Julian. Photoelectron transfer dissociation reveals surprising favorability of

zwitterionic states in large gaseous peptides and proteins. J. Am. Chem. Soc. 139, 10286 (2017).

https://doi.org/10.1021/jacs.7b02428

K. Yong-Kim, M.E. Rudd. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 50, 3954 (1994).

https://doi.org/10.1103/PhysRevA.50.3954

K. Yong-Kim, K.K. Irikura, M.A. Ali. Electron-impact total ionization cross sections of molecular ions. J. Res. Nat. Inst. Stand. Technol. 105, 285 (2000).

https://doi.org/10.6028/jres.105.032

H. Tanaka, M.J. Brunger, L. Campbell, H. Kato, M. Hoshino, A.R.P. Rau. Scaled plane-wave Born cross sections for atoms and molecules. Rev. Mod. Phys. 88, 025004 (2016).

https://doi.org/10.1103/RevModPhys.88.025004

M. Gryzi'nski. Classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev. 138, A336 (1965).

https://doi.org/10.1103/PhysRev.138.A336

M.A. Rosanoff. On Fischer's classification of stereo-isomers. J. Am. Chem. Soc. 28, 114 (1906).

https://doi.org/10.1021/ja01967a014

O.B. Shpenik, A.M. Zavilopulo, O.V. Pylypchynets. Fragmentation of PTCDA molecule by electron impact. Dopov. Nats. Akad. Nauk Ukr. 5, 44 (2018) (in Ukrainian).

https://doi.org/10.15407/dopovidi2018.05.044

O. Shpenik, A. Zavilopulo, E. Remeta, S. Demes, M. Erdevdy. Inelastic processes of electron interaction with chalcogens in the gaseous phase. Ukr. J. Phys. 65, 557 (2020).

https://doi.org/10.15407/ujpe65.7.557

A.N. Zavilopulo, O.B. Shpenik, A.N. Mylymko, V.Yu. Shpenik. Mass spectrometry of d-ribose molecules. Int. J. Mass Spectrom. 441, 1 (2019).

https://doi.org/10.1016/j.ijms.2019.03.008

A. Ostroverkh, A. Zavilopulo, O. Shpenik. Ionization of guanine, adenine and thymine molecules by electron impact. Eur. Phys. J. D 73, 38 (2019).

https://doi.org/10.1140/epjd/e2019-90532-3

A.M. Zavilopulo, O.B. Shpenik, O.V. Pylypchynets. Xylitol molecule mass spectrometry. Techn. Phys. 89, No. 1, 16 (2019) (in Russian).

E. Illenberger, J. Momigny. Gaseous molecular ions. An introduction to elementary processes induced by ionization. Topics Phys. Chem. 2, 346 (1992).

https://doi.org/10.1007/978-3-662-07383-4

R.L. Jean Maruani, E.J. Br¨andas. Progress in Theoretical Chemistry and Physics (Springer, 2013).

J.H. Gross. Mass Spectrometry (Springer, 2011).

https://doi.org/10.1007/978-3-642-10711-5

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson. Gaussian 09, Revision E.01 (Gaussian Inc., 2009).

Sh.Sh. Demesh, A.N. Zavilopulo, O.B. Shpenik, E.Yu. Remeta. Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact. Techn. Phys. 85, No. 6, 44 (2015).

https://doi.org/10.1134/S1063784215060067

Sh.Sh. Demesh, E.Yu. Remeta. Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments. Eur. Phys. J. D. 69, 168 (2015).

https://doi.org/10.1140/epjd/e2015-50636-4

National Center for Biotechnology Information. PubChem Database. Glutamine, CID=5961 [https://pubchem.ncbi.nlm.nih.gov/compound/Glutamine].

National Center for Biotechnology Information. PubChem Database. Glutamic acid, CID=33032 [https://pubchem.ncbi.nlm.nih.gov/compound/Glutamic-acid].

M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).

https://doi.org/10.1186/1758-2946-4-17

P. Papp, P. Shchukin, J. Kocisek, S. J Matejcik. Electron ionization and dissociation of aliphatic amino acids. Chem. Phys. 137, 105101 (2012).

https://doi.org/10.1063/1.4749244

M.I. Migovich, V.A. Kel'man. Study of the spectral-luminescent properties of the threonine molecule. Opt. Spektrosk. 121, 69 (2016) (in Russian).

https://doi.org/10.1134/S0030400X16070134

NIST Standard Reference Database [http://www.webbook.nist.gov].

Spectral Database for Organic Compounds SDBS [https://sdbs.db.aist.go.jp].

T. Fiegele, G. Hanel, I. Torres, M. Lezius, T.D. M¨ark. Threshold electron impact ionization of carbon tetrafluoride, trifluoromethane, methane and propane. J. Phys. B 33, 4263 (2000).

https://doi.org/10.1088/0953-4075/33/20/306

A.N. Zavilopulo, A.I. Bulhakova. Mass spectrometry of glutamic acid and glutamine in the gas phase. Techn. Phys. Lett. 45, No. 24, 36 (2019).

https://doi.org/10.1134/S1063785019120290

L. Baliulyt˙e. Quantum Chemical Investigations of the Fragmentation of Amino Acids by Low Energy Electrons. Dr. Sci. thesis (Vilnius, 2020).

I.I. Shafranyosh, Yu.Yu. Svyda, M.I. Sukhoviya, M.I. Shafranyosh, B.F. Minaiev, H.V. Barishnikov, V.A. Minaiev. Absolute effective cross sections of ionization of adenine and guanine molecules by electron impact. Techn. Phys. 85, No. 10, 16 (2015).

https://doi.org/10.1134/S1063784215100278

P. Mozejko, L. Sanche. Cross section calculations for electron scattering from DNA and RNA bases. Radiat. Environ. Biophys. 42, 201 (2003). https://doi.org/10.1007/s00411-003-0206-7

D. Gross, G. Grodsky. On the sublimation of amino acids and peptides. J. Am. Chem. Soc. 77, 1678 (1955). https://doi.org/10.1021/ja01611a085

Y. Yuan, M.J.L. Mills, P.L.A. Popelier, F. Jensen. Comprehensive analysis of energy minima of the 20 natural amino acids. J. Phys. Chem. 118, 7876 (2014). https://doi.org/10.1021/jp503460m

A. Gil, S. Simon, L. Rodr'ıguez-Santiago, J. Bertr'an, M. Sodupe. Influence of the side chain in the structure and fragmentation of amino acids radical cations. J. Chem. Theor. Comput. 3, 2210 (2007). https://doi.org/10.1021/ct700055p

S. Simon, A. Gil, M. Sodupe, J. Bertr'an. Structure and fragmentation of glycine, alanine, serine and cysteine radical cations. A theoretical study. J. Mol. Struct. (Theochem) 727, 191 (2005). https://doi.org/10.1016/j.theochem.2005.02.053

H.-F. Lu, F.-Y. Li, S. H. Lin. Theoretical interpretation of the fragments generated from a glycine radical cation. J. Phys. Chem. 42, 9233 (2004). https://doi.org/10.1021/jp047687k

Published

2021-10-04

How to Cite

Zavilopulo, A., Demes, S., Remeta, E., & Bulhakova, A. (2021). Electron-Impact Ionization of the Glutamic Acid and Glutamine Molecules. Ukrainian Journal of Physics, 66(9), 745. https://doi.org/10.15407/ujpe66.9.745

Issue

Section

Optics, atoms and molecules