Specific Effect of Microwaves on the Aqueous Solution of Rhodamine 6G According to Fluorescence Analysis

Authors

  • L.A. Bulavin Taras Shevchenko National University of Kyiv
  • N.V. Gaiduk Taras Shevchenko National University of Kyiv
  • M.O. Redkin Taras Shevchenko National University of Kyiv
  • A.V. Yakunov Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe66.3.265

Keywords:

microwave heating, fluorescence, organic dye, percolation model

Abstract

The effect of microwaves with a frequency of 2.45 GHz on the fluorescence of the aqueous solution of the organic dye rhodamine 6G has been studied. Deviations in the dynamics of the relative intensity and peak wavelength changes in the cases of microwave absorption and subsequent cooling of the solution, on the other hand, and contact heating and subsequent cooling, on the other hand, were registered. The obtained results are interpreted with the help of the percolation model. It is assumed that the electric component of the electromagnetic wave can directly affect the structure of the percolation cluster formed by the network of hydrogen bonds.

References

A. Bekal, A.M. Hebbale, M. Srinath. Review on material processing through microwave energy. IOP Conf. Ser.: Mater. Sci. Eng. 376, 012079 (2018).

https://doi.org/10.1088/1757-899X/376/1/012079

R. Walczak, J. Dziuban. "Microwave memory effect" of activated water and aqueous KOH solution. In: Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications, 17-19 May 2004, Warsaw (IEEE, 2004).

A. Copty, Y. Neve-Oz, I. Barak, M. Golosovsky, D. Davidov. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys. J. 91, 1413 (2006).

https://doi.org/10.1529/biophysj.106.084111

Huang Kama, Xiaoqing Yang, Wei Hua, Guozhu Jia, Lijun Yang. Experimental evidence of a microwave non-thermal effect in electrolyte aqueous solutions. New J. Chem. 33, 1486 (2009).

https://doi.org/10.1039/b821970b

G. Morariu, M. Miron, A.-M. Mita, L.-V. Stan. Microwaves electromagnetic field influence on pH. Theoretical and experimental results. Rev. Air Force Acad. No. 1, 45 (2009).

H. Parmar, A. Masahiro, K. Yushin, A. Yusuke, Ph. Chi, P. Vishnu, E. Geoffrey. Influence of microwaves on the water surface tension. Langmuir 30, 9875 (2014).

https://doi.org/10.1021/la5019218

A. Yakunov, M. Biliy, A. Naumenko. Long-term structural modification of water under microwave irradiation: Low-

frequency Raman spectroscopic measurements. Adv. Opt. Technol. 2017, 1 (2017).

https://doi.org/10.1155/2017/5260912

J. Jacob, L. Chia, F. Boey. Thermal and non-thermal interaction of microwave radiation with materials. J. Mater. Sci. 30, 5321 (1995).

https://doi.org/10.1007/BF00351541

D. Stuerga, P. Gaillard. Microwave athermal effects in chemistry: A myth's autopsy: Part I: Historical background

and fundamentals of wave-matter interaction. J. Microw. Power Electromagn. Ener. 31, 87 (1996).

https://doi.org/10.1080/08327823.1996.11688299

N. Kuhnert. Microwave-assisted reactions in organic synthesis: Are there any nonthermal microwave effects? Angew. Chem. Int. Ed. 41, 1863 (2002).

https://doi.org/10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L

C. Kappe, B. Pieber, D. Dallinger. Microwave effects in organic synthesis: Myth or reality? Angew. Chem. Int. Ed. 52, 1088 (2013).

https://doi.org/10.1002/anie.201204103

Boon Wong. Understanding nonthermal microwave effects in materials processing - A classical non-quantum approach. In: Processing and Properties of Advanced Ceramics and Composites VI: Ceramic Transactions, Vol. 249 (The American Ceramic Society, 2014), p. 329.

https://doi.org/10.1002/9781118995433.ch32

P. Bana, I. Greiner. Interpretation of the effects of microwaves. In Milestones in Microwave Chemistry (Springer, 2016), Ch. 4.

https://doi.org/10.1007/978-3-319-30632-2_4

J. Lou, T.M. Finegan, P. Mohsen, T.A. Hatton, P.E. Laibinis. Fluorescence-based thermometry: Principles and applications. Rev. Analyt. Chem. 18, 235 (1999).

https://doi.org/10.1515/REVAC.1999.18.4.235

L. Levshin, A. Saletskii, V. Yuzhakov. Forms of aggregation of molecules of rhodamine dyes in mixtures of polar and nonpolar solvents. Zh. Strukt. Khim. 26, 95 (1985) (in Russian).

https://doi.org/10.1007/BF00748362

A. Vasylieva, I. Doroshenko, Ye. Vaskivskyi, Ye. Chernolevska, V. Pogorelov. FTIR study of condensed water structure. J. Mol. Struct. 1167, 232 (2018).

https://doi.org/10.1016/j.molstruc.2018.05.002

N. Kuzkova, O. Popenko, A. Yakunov. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments. J. Biomed. Imag. 2014, 1 (2014).

https://doi.org/10.1155/2014/243564

D. Babich, A. Kulsky, V. Pobiedina, A. Yakunov. Application of fluorescent dyes for some problems of bioelectromagnetics. In: Proc. SPIE 9887, Biophotonics: Photonic Solutions for Better Health Care V 9887, 988735 (2016).

https://doi.org/10.1117/12.2227373

J.R. Lakowicz. Principles of Fluorescence Spectroscopy (Springer, 2006).

https://doi.org/10.1007/978-0-387-46312-4

V. Degoda, A. Gumenyuk, I. Zakharchenko, O. Svechnikova. The features of the hyperbolic law of phosphorescence. J. Phys. Stud. 15, 1 (2011).

https://doi.org/10.30970/jps.15.3301

S. Viznyuk, P. Pashinin. The effect of temperature combustion luminescence in water solution of rhodamine 6G. JETP Lett. 47, 190 (1988).

K. Kristinaityte, A. Marsalka, L. Dagys, K. Aidas, I. Doroshenko, Y. Vaskivskyi, Y. Chernolevska, V. Pogorelov, N.R. Valeviciene, V. Balevicius. NMR, Raman, and DFT study of lyotropic chromonic liquid crystals of biomedical interest: Tautomeric equilibrium and slow self-assembling in sunset yellow aqueous solutions. J. Phys. Chem. B 122, 3047 (2018).

https://doi.org/10.1021/acs.jpcb.8b00350

L. Bulavin, M. Biliy, A. Maksymov, A. Yakunov. Peculiarities of the low-frequency Raman scattering by supramolecular inhomogeneties of hydrogen-bonded liquids. Ukr. J. Phys. 55, 966 (2010).

N. Kuzkova, A. Yakunov, M. Bilyi. Low-frequency Raman spectroscopic monitoring of supramolecular structure in H-bonded liquids. Adv. Opt. Technol. 2014, 1 (2014).

https://doi.org/10.1155/2014/798632

A. Yakunov, P. Yakunov. Slow dynamics of water structure in cellular automata model. In: Proceedings of the International Conference "Physics of Liquid Matter: Modern Problems" (2004), p. 140.

H. Hinrikus, M. Bachmann. J. Lass. Understanding physical mechanism of low-level microwave radiation effect. Int. J. Radiat. Biol. 94, 877 (2018).

https://doi.org/10.1080/09553002.2018.1478158

N. Domnina, A. Korolev, A. Potapov, A. Saletskii. Influence of microwave radiation on the association processes

of rhodamine 6G molecules in aqueous solutions. J. Appl. Spectrosc. 72, 33 (2005).

https://doi.org/10.1007/s10812-005-0027-3

V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko. L.G.M. Pettersson. From clusters to condensed phase-FT IR studies of water. J. Mol. Liq. 235, 7 (2017).

https://doi.org/10.1016/j.molliq.2016.12.037

Published

2021-04-07

How to Cite

Bulavin, L., Gaiduk, N., Redkin, M., & Yakunov, A. (2021). Specific Effect of Microwaves on the Aqueous Solution of Rhodamine 6G According to Fluorescence Analysis. Ukrainian Journal of Physics, 66(3), 265. https://doi.org/10.15407/ujpe66.3.265

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>