Generation of Entangled Light from a Nondegenerate Three-Level Laser Coupled to a Two-Mode Vacuum Reservoir

Authors

  • T. Abebe Department of Physics, Adama Science and Technology University
  • Ch. Gashu Department of Physics, Jimma University

DOI:

https://doi.org/10.15407/ujpe66.7.551

Keywords:

atomic coherence, quadrature squeezing, entanglement, mean photon number

Abstract

The quantum properties of a nondegenerate three-level cascade laser coupled to a two-mode vacuum reservoir are throughly analyzed with the use of the pertinent master equation and stochastic differential equations associated with the normal ordering. Particularly, the enhancement of squeezing and the amplification of photon entanglement of the two-mode cavity light are investigated. It is found that the two cavity modes are strongly entangled, and the degree of entanglement is directly related to the two-mode squeezing. Moreover, the squeezing and entanglement of the cavity radiation enhance with the rate of atomic injection.

References

S. Qamar, M. Al-Amri, M.S. Zubairy, Entanglement in a bright light source via Raman-driven coherence. Phys. Rev. A 79, 013831 (2009).

https://doi.org/10.1103/PhysRevA.79.013831

J. Anwar, M.S. Zubairy. Quantum-statistical properties of noise in a phase-sensitive linear amplifier. Phys. Rev. A 49, 481 (1994).

https://doi.org/10.1103/PhysRevA.49.481

N.A. Ansari, J.G. Banacloche, M.S. Zubairy. Phase-sensitive amplifi cation in a three-level atomic system. Phys. Rev. A 41, 5179 (1990).

https://doi.org/10.1103/PhysRevA.41.5179

H. Xiong, M.O. Scully, M.S. Zubairy. Correlated spontaneous emission laser as an entanglement amplifier. Phys. Rev. Lett. 94, 023601 (2005).

https://doi.org/10.1103/PhysRevLett.94.023601

C.A. Blockley, D.F. Walls. Intensity fl uctuations in a frequency down-conversion process with three-level atoms. Phys. Rev. 43, 5049 (1991).

https://doi.org/10.1103/PhysRevA.43.5049

N. Lu, F.X. Zhao, J. Bergou. Nonlinear theory of a two-photon correlated-spontaneous-emission laser: A coherently pumped two-level-two-photon laser. Phys. Rev. A 39, 5189 (1989).

https://doi.org/10.1103/PhysRevA.39.5189

E. Alebachew. Enhanced squeezing and entanglement in a nondegenerate three-level cascade laser with injected squeezed light. Opt. Commun. 280, 133 (2007).

https://doi.org/10.1016/j.optcom.2007.08.017

T. Abebe. The quantum analysis of non-degenerate three-level laser with spontaneous emission and noiseless vacuum reservoir. Ukr. J. Phys. 63, 969 (2018).

https://doi.org/10.15407/ujpe63.11.969

B. Teklu. Parametric oscillation with the cavity mode driven by coherent light and coupled to a squeezed vacuum reservoir. Opt. Commun. 261, 310 (2006).

https://doi.org/10.1016/j.optcom.2005.12.004

T. Abebe. Enhancement of squeezing and entanglement in a non-degenerate three-level cascade laser with coherently driven cavity. Ukr. J. Phys. 63, 733 (2018).

https://doi.org/10.15407/ujpe63.8.733

T. Abebe. Coherently driven nondegenerate three-level laser with noiseless vacuum reservoir. Bulg. J. Phys. 45, 357 (2018).

T. Abebe, N. Gemechu. Two-level atom with squeezed light from optical parametric oscillators. Ukr. J. Phys. 63, 600 (2018).

https://doi.org/10.15407/ujpe63.7.600

Ch. Gashu, T. Abebe. Externally induced entanglement amplification in a coherently pumped emission of laser

with parametric amplifier and coupled to squeezed vacuum reservoir. Phys. Scr. 95, 075105 (2020).

https://doi.org/10.1088/1402-4896/ab923b

T. Abebe, N. Gemechu, Ch. Gashu, K. Shogile, S. Hailemariam, Sh. Adisu. The quantum analysis of nonlinear optical parametric processes with thermal reservoirs. Int. J. Opt. 2020, 7198091 (2020).

https://doi.org/10.1155/2020/7198091

T. Abebe, N. Gemechu, K. Shogile, S. Hailemariam, Ch. Gashu, Sh. Adisu. Entanglement quantification using

various inseparability criteria for correlated photons. Rom. J. Phys. 65, 107 (2020).

A. Einstein, B. Podolsky, R. Rosen. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).

https://doi.org/10.1103/PhysRev.47.777

J.S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964).

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

J.M. Liu, B.S. Shi, X.F. Fan, J. Li, G.C. Guo. Wigner function description of continuous variable entanglement swapping. J. Opt. B: Quant. Semiclass. Opt. 3, 189 (2001).

https://doi.org/10.1088/1464-4266/3/4/301

S.L. Braunstein, H.J. Kimble. Dense coding for continuous variables. Phys. Rev. A 61. 042302 (2000).

https://doi.org/10.1103/PhysRevA.61.042302

S. Lloyd, S.L. Braunstein. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784 (1999).

https://doi.org/10.1103/PhysRevLett.82.1784

S.L. Braunstein. Quantum error correction for communication with linear optics. Nature 394, 47 (1998).

https://doi.org/10.1038/27850

T.C. Ralph. Continuous variable quantum cryptography. Phys.Rev. A 61, 010302 (2000).

https://doi.org/10.1103/PhysRevA.61.010303

T. Jennewein, C. Simon, G. Weihs, H. Wein-furter, A. Zeilinger. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000).

https://doi.org/10.1103/PhysRevLett.84.4729

C.H. Bennett, D.P. DiVincenzo. Quantum information and computation. Nature 404, 247 (2000).

https://doi.org/10.1038/35005001

S. Barzanjeh, S. Pirandola, C. Weedbrook. Continuous-variable dense coding by optomechanical cavities. Phys. Rev. A 88, 042331 (2013).

https://doi.org/10.1103/PhysRevA.88.042331

N. Ganguly, S. Adhikari, A.S. Majumdar, J. Chatterjee. Entanglement witness operator for quantum teleportation.

Phys. Rev. Lett. 107, 270501 (2011).

https://doi.org/10.1103/PhysRevLett.107.239904

C. Branciard, N. Brunner, H. Buhrman, R. Cleve, N. Gisin, S. Portmann, D. Rosset, M. Szegedy. Classical simulation

of entanglement swapping with bounded communication. Phys. Rev. Lett. 109, 100401 (2012).

https://doi.org/10.1103/PhysRevLett.109.100401

T. Kitagawa, A. Aspect, M. Greiner, E. Demler. Phase-sensitive measurements of order parameters for ultracold atoms through two-particle interferometry. Phys. Rev. Lett. 106, 115302 (2011).

https://doi.org/10.1103/PhysRevLett.106.115302

S. Koike, H. Takahashi, H. Yonezawa, N. Takei, S.L. Braunstein, T. Aoki, A. Furusawa. Phys. Rev. Lett. 96, 060504 (2006).

https://doi.org/10.1103/PhysRevLett.96.060504

R.T. Thew, W.J. Munro. Entanglement manipulation and concentration. Phys. Rev. A 63, 030302(R)(2001). https://doi.org/10.1103/PhysRevA.63.030302

T. Kishore, P. Anirban, S. Biswajit, J. Perina. Higher-order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing, and antibunching. Phys. Rev. A 90, 013808 (2014). https://doi.org/10.1103/PhysRevA.90.013808

N. Javid, T. Kishore, P. Anirban, S. Banerjee. Probing nonclassicality in an optically driven cavity with two atomic ensembles. Phys. Rev. A 97, 063840 (2018). https://doi.org/10.1103/PhysRevA.97.063840

L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000). https://doi.org/10.1103/PhysRevLett.84.2722

Y.H. Ma, Q.X. Mu, G.H. Yang, L. Zhou. Enhanced continuous-variable entanglement by a self-phase-locked type-II optical parameter oscillator with feedback loops. Phys. B: At. Mol. Opt. Phys. 41, 215502 (2008). https://doi.org/10.1088/0953-4075/41/21/215502

G. Vidal, R.F. Wener. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

M. Fox. Quantum Optics: An Introduction (Oxford University Press, 2006).

Ch. Gashu, E. Mosisa, T. Abebe. Entanglement quantification of correlated photons generated by three-level laser with parametric amplifi er and coupled to a two-mode vacuum reservoir. Adv. Math. Phys. 2020, 9027480 (2020). https://doi.org/10.1155/2020/9027480

G. Adesso, A. Serafi ni, F. Illuminati. Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004). https://doi.org/10.1103/PhysRevA.70.022318

Downloads

Published

2021-08-04

How to Cite

Abebe, T., & Gashu, C. (2021). Generation of Entangled Light from a Nondegenerate Three-Level Laser Coupled to a Two-Mode Vacuum Reservoir. Ukrainian Journal of Physics, 66(7), 551. https://doi.org/10.15407/ujpe66.7.551

Issue

Section

Optics, atoms and molecules