Electron-Positron Pair Photoproduction in a Strong Magnetic Field Through the Polarization Cascade

Authors

  • M. Diachenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • O. Novak Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • R. Kholodov Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • A. Fomina Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.3.187

Keywords:

e−e pair photoproduction, vacuum polarization, quantum electrodynamics, strong magnetic field

Abstract

The process of the ee+ pair photoproduction in a strong magnetic field through the polarization cascade (the creation of an ee+ pair from a single photon and its subsequent annihilation to a single photon) has been considered. The kinematics of the process is analyzed, and the expression for the general amplitude is obtained. A radiation correction to the process of pair creation at the lowest Landau levels by a single photon is found in the case where the energy of this photon is close to the threshold value. A comparison with the process of ee+ pair production by one photon is made.

References

J.K. Daugherty, A.K. Harding. Electromagnetic cascades in pulsars. Astrophys. J. 252, 337 (1982). https://doi.org/10.1086/159561

P.A. Sturrock, A.K. Harding. Cascade model of gamma-ray bursts. Astrophys. J. 346, 950 (1989). https://doi.org/10.1086/168075

J.K. Daugherty, A.K. Harding. Gamma-ray pulsars: Emission from extended polar cap cascades. Astrophys. J. 458, 278 (1996). https://doi.org/10.1086/176811

P.A. Sturrock, A.K. Harding. A model of pulsars. Astrophys. J. 164, 529 (1971). https://doi.org/10.1086/150865

J.K. Daugherty. A.K. Harding. Pair production in superstrong magnetic fields. Astrophys. J. 273, 761 (1983). https://doi.org/10.1086/161411

A.K. Harding. Physics in strong magnetic fields near neutron stars. Science 251, 1033 (1991). https://doi.org/10.1126/science.251.4997.1033

H. Euler, B. Kockel, The scattering of light by light in the Dirac theory. Naturwissenschaften 23, 246 (1935). https://doi.org/10.1007/BF01493898

W. Heisenberg, H. Euler. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714 (1936). https://doi.org/10.1007/BF01343663

J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664

I.A. Batalin, A.E. Shabad. Green's function of a photon in a constant homogeneous electromagnetic field of general form. JETP 33, 483 (1971).

S. Adler. Photon splitting and photon dispersion in a strong magnetic field. Ann. Phys. 67, 599 (1971). https://doi.org/10.1016/0003-4916(71)90154-0

W. Tsai. Vacuum polarization in homogeneous magnetic fields. Phys. Rev. D 10, 2699 (1974). https://doi.org/10.1103/PhysRevD.10.2699

V.M. Katkov. Polarization operator of a photon in a magnetic field. Zh. ' Eksp. Teor. Fiz. 150, 229 (2016) (in Russian).

W. Tsai, T. Erber. Propagation of photons in homogeneous magnetic fields: Index of refraction. Phys. Rev. D 15, 1132 (1975). https://doi.org/10.1103/PhysRevD.12.1132

K. Kohri, S. Yamada. Polarization tensors in strong magnetic fields. Phys. Rev. D 65, 043006 (2002). https://doi.org/10.1103/PhysRevD.65.043006

K. Hattori, K. Itakura. Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels. Ann. Phys. 330, 23 (2013). https://doi.org/10.1016/j.aop.2012.11.010

K. Hattori, K. Itakura. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level. Ann. Phys. 334, 58 (2013). https://doi.org/10.1016/j.aop.2013.03.016

A. Shabad. Photon dispersion in a strong magnetic field. Ann. Phys. 90, 166 (1975). https://doi.org/10.1016/0003-4916(75)90144-X

M. Diachenko, O. Novak, R. Kholodov. A cascade of e−e+ pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field. Laser Phys. 26, 066001 (2016). https://doi.org/10.1088/1054-660X/26/6/066001

M. Diachenko, O. Novak, R. Kholodov. Vacuum birefringence in supercritical magnetic fields. Ukr. J. Phys. 64, 179 (2019). https://doi.org/10.15407/ujpe64.3.181

G. Calucci, R. Ragazzon. Nonlogarithmic terms in the strong field dependence of the photon propagator. J. Phys. A 27, 2161 (1994). https://doi.org/10.1088/0305-4470/27/6/036

V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249 (1996). https://doi.org/10.1016/0550-3213(96)00021-1

M. Diachenko, O. Novak, E. Padusenko, R. Kholodov. Vacuum birefringence in the fields of a current coil and a guided electromagnetic wave. Ukr. J. Phys. 63, 979 (2018). https://doi.org/10.15407/ujpe63.11.979

E. Zavattini, G. Zavattini, G. Ruoso et al. New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys. Rev. D 77, 032006 (2008). https://doi.org/10.1103/PhysRevD.77.032006

F. Della Valle, E. Milotti, A. Ejlli et al. First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence. Phys. Rev. D 90, 092003 (2014). https://doi.org/10.1103/PhysRevD.90.092003

F. Della Valle, A. Ejlli, U. Gastaldi et al. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity. Eur. Phys. J. C 76, 24 (2016). https://doi.org/10.1140/epjc/s10052-015-3869-8

H.P. Schlenvoigt, T. Heinzl, U. Schramm et al. Prospects for studying vacuum polarisation using dipole and synchrotron radiation. Phys. Scr. 91, 023010 (2016).

O. Tesileanu, D. Ursescu, R. Dabu, N. V. Zamfir. Extreme light infrastructure. J. Phys.: Conf. Ser. 420, 012157 (2013). https://doi.org/10.1088/1742-6596/420/1/012157

R.P. Mignani, V. Testa, D. Gonzalez Caniulefet et al. Evidence for vacuum birefringence from the first opticalpolarimetry measurement of the isolated neutron star RX J1856.5-3754. Mon. Not. Roy. Astron. Soc. 465, 492 (2017). https://doi.org/10.1093/mnras/stw2798

N.P. Klepikov. Radiation of photons and electron-positron pairs in a magnetic field. Zh. ' Eksp. Teor. Fiz. 26, 19 (1954) (in Russian).

V.N. Baier, V.M. Katkov. Processes involved in the motion of high energy particles in a magnetic field. Sov. Phys. - JETP 26, 854 (1968).

V.N. Baier, V.M. Katkov. Quasiclassical theory of bremsstrahlung by relativistic particles. Sov. Phys. - JETP 28, 807 (1969).

V.N. Baier, V.M. Katkov. Pair creation by a photon in a strong magnetic field. Phys. Rev. D 75, 07300 (2007). https://doi.org/10.1103/PhysRevD.75.073009

L. Semionova, D. Leahy. Remarks concerning pair creation in strong magnetic fields. Astron. Astrophys. 373, 272 (2001). https://doi.org/10.1051/0004-6361:20010491

O.P. Novak, R.I. Kholodov. Polarization effects in the photon-induced process of electron-positron pair creation in a magnetic field, studied in the ultra-quantum-mechanical approximation. Ukr. J. Phys. 53, 185 (2008).

O.P. Novak, R.I. Kholodov. Spin-polarization effects in the processes of synchrotron radiation and electron-positron pair production by a photon in a magnetic field. Phys. Rev. D 80, 025025 (2009). https://doi.org/10.1103/PhysRevD.80.025025

V.V. Skobelev. On photon propagation in a magnetic field. Zh. ' Eksp. Teor. Fiz. 73, 1301 (1977) (in Russian).

M. Dyachenko, O. Novak, R. Kholodov. Resonant thresh-old two-photon e−e+ pair production onto the lowest Landau levels in a strong magnetic field. Ukr. J. Phys. 59, 849 (2014). https://doi.org/10.15407/ujpe59.09.0849

M.M. Diachenko, O.P. Novak, R.I. Kholodov. Resonant generation of an electron-positron pair by two photons to excited Landau levels. JETP 121, 813 (2015). https://doi.org/10.1134/S1063776115110126

M.M. Diachenko, O.P. Novak, R.I. Kholodov. Pair production in a magnetic and radiation field in a pulsar magnetosphere. Mod. Phys. Lett. A 30, 1550111 (2015). https://doi.org/10.1142/S0217732315501114

O.P. Novak, R.I. Kholodov, P.I. Fomin. Electron-positron pair production by an electron in a magnetic field near the process threshold. JETP 110, 978 (2010). https://doi.org/10.1134/S1063776110060075

O.P. Novak, R.I. Kholodov. Electron-positron pair production by an electron in a magnetic field in the resonant case. Phys. Rev. D 86, 105013 (2012). https://doi.org/10.1103/PhysRevD.86.105013

M.M. Diachenko, R.I. Kholodov. Energy losses of positive and negative charged particles in electron gas. Mod. Phys. Lett. A 32, 1750031 (2017). https://doi.org/10.1142/S0217732317500316

V. Skalozub. Induced color charges, effective yyG vertex in QGP. Applications to heavy-ion collisions. Ukr. J. Phys. 64, 754 (2019). https://doi.org/10.15407/ujpe64.8.754

V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic Quantum Theory (Pergamon Press, 1982).

A. Chodos, K. Everding, D.A. Owen. QED with a chemical potential: The case of a constant magnetic field. Phys. Rev. D 42, 2881 (1990). https://doi.org/10.1103/PhysRevD.42.2881

V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Dynamical chiral symmetry breaking by a magnetic field in QED. Phys. Rev. D 52, 4747 (1995). https://doi.org/10.1103/PhysRevD.52.4747

D.B. Melrose, A.J. Parle. Quantum electrodynamics in strong magnetic fields. I. Electron states. Aust. J. Phys. 36, 755 (1983). https://doi.org/10.1071/PH830755

P.I. Fomin, R.I. Kholodov. To the theory of resonance quantum-electrodynamic processes in an external magnetic field. Ukr. Fiz. Zh. 44, 1526 (1999) (in Ukrainian).

N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Field. (Interscience, 1959).

Published

2020-03-26

How to Cite

Diachenko, M., Novak, O., Kholodov, R., & Fomina, A. (2020). Electron-Positron Pair Photoproduction in a Strong Magnetic Field Through the Polarization Cascade. Ukrainian Journal of Physics, 65(3), 187. https://doi.org/10.15407/ujpe65.3.187

Issue

Section

Fields and elementary particles