Thermo-Optical Effects in Plasmonic Metal Nanostructures
DOI:
https://doi.org/10.15407/ujpe66.2.112Keywords:
metal nanoparticles, surface plasmon resonance, temperature effects, electron-phonon scattering, nanoparticle thermal expansion, plasmon enhanced photoluminescence, light-induced heatingAbstract
The effects of the temperature on the surface plasmon resonance (SPR) in noble metal nanoparticles at various temperatures ranging from 77 to 1190 K are reviewed. A temperature increase results in an appreciable red shift and leads to a broadening of the SPR in the nanoparticles (NPs). This observed thermal expansion along with an increase in the electron-phonon scattering rate with rising temperature emerge as the dominant physical mechanisms producing the red shift and broadening of the SPR. Strong temperature dependence of surface plasmon enhanced photoluminescence from silver (Ag) and copper (Cu) NPs is observed. The quantum photoluminescence yield of Ag nanoparticles decreases as the temperature increases, due to a decrease in the plasmon enhancement resulting from an increase in the electron-phonon scattering rate. An anomalous temperature dependence of the photoluminescence from Cu nanoparticles was also observed; the quantum yield of photoluminescence increases with the temperature. The interplay between the SPR and the interband transitions plays a critical role in this effect. The surface-plasmon involved laser heating of a dense 2D layer of gold (Au) NPs and of Au NPs in water colloids is also examined. A strong increase in the Au NP temperature occurs, when the laser frequency approaches the SPR. This finding supports the resonant plasmonic character of the laser heating of metal NPs. The sharp blue shift of the surface plasmon resonance in colloidal Au NPs at temperatures exceeding the water boiling point indicates the vapor-bubble formation near the surface of the NPs.
References
A. Barhoumi, D. Zhang, F. Tam, N. Halas. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523 (2008).
https://doi.org/10.1021/ja800023j
F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, P. Nordlander. Metallic NP arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707 (2008).
https://doi.org/10.1021/nn800047e
G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, F. Aussenegg. Probing surface plasmon fields by far-field Raman imaging. J. Microscopy 229, 189 (2008).
https://doi.org/10.1111/j.1365-2818.2008.01885.x
R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, A. Boltasseva. Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92, 043101 (2008).
https://doi.org/10.1063/1.2836271
G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, T. Ebbesen. Atomic fluorescence mapping of optical field
intensity profiles issuing from nanostructured slits, milled into subwavelength metallic layers. Appl. Phys. B 81, 871 (2005).
https://doi.org/10.1007/s00340-005-2016-x
O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, A.O. Pinchuk. Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B 79, 235438 (2009).
https://doi.org/10.1103/PhysRevB.79.235438
A. Gobin, M. Lee, R. Drezek, N. Halas, J. West. Vascular targeting of nanoshells for photothermal cancer therapy. Clin. Cancer Res. 12, B83 (2014).
C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer. Near-field photochemical imaging of noble metal nanostructures. Nano Lett. 5, 615 (2005).
https://doi.org/10.1021/nl047956i
K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, G. Borisy. Molecular dynamics imaging in micropatterned living cells. Nature Methods 2, 739 (2005).
https://doi.org/10.1038/nmeth796
M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, S.E. Clare. A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759 (2007).
https://doi.org/10.1021/nl072209h
L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, J.West. Metal nanoshells. Ann. Biomed. Engin. 34, 15 (2006).
https://doi.org/10.1007/s10439-005-9001-8
D. O'Neal, L. Hirsch, N. Halas, J. Payne, J. West. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171 (2004).
https://doi.org/10.1016/j.canlet.2004.02.004
D. Citrin. Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled. Nano Lett. 5, 985 (2005).
https://doi.org/10.1021/nl050513+
J. Jung, T. Sondergaard, S. Bozhevolnyi. Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding. Phys. Rev. B 76, 035434 (2007).
https://doi.org/10.1103/PhysRevB.76.035434
K. Leosson, T. Nikolajsen, A. Boltasseva, S. Bozhevolnyi. Long-range surface plasmon polariton nanowire waveguides for device applications. Opt. Express 14, 314 (2006).
https://doi.org/10.1364/OPEX.14.000314
B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, J. Krenn. Dielectric stripes on gold as surface plasmon waveguides. App. Phys. Lett. 88, 094104 (2006).
https://doi.org/10.1063/1.2180448
J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475 (1997).
https://doi.org/10.1364/OL.22.000475
U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer, 1995) [ISBN: 978-3-662-09109-8].
https://doi.org/10.1007/978-3-662-09109-8
C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particle (Wiley, 1998) [ISBN: 9783527618156].
https://doi.org/10.1002/9783527618156
B.G. Ershov, E. Janata, A. Henglein, A. Fojtik. Silver atoms and clusters in aqueous solution: Absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. J. Phys. Chem. 97, 4589 (1993).
https://doi.org/10.1021/j100120a006
A. Henglein. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457 (1993).
https://doi.org/10.1021/j100123a004
U. Kreibig. Interface-induced dephasing of Mie plasmon polaritons. Appl. Phys. B 93, 79 (2008).
https://doi.org/10.1007/s00340-008-3213-1
W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220 (2009).
https://doi.org/10.1038/nphoton.2009.26
L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549 (2003).
https://doi.org/10.1073/pnas.2232479100
A. Lowery, A. Gobin, E. Day, N. Halas, J. West. Immunonanoshell laser-assisted therapy targets and ablates tumor cells. Breast Cancer Res. Treat. 100, S289 (2006).
A. Lowery, A. Gobin, E. Day, N. Halas, J. West. Immuno nanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomed. 1, 149 (2006).
https://doi.org/10.2147/nano.2006.1.2.149
L. Cao, D.N. Barsic, A.R. Guichard, M.L. Brongersma. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523 (2007).
https://doi.org/10.1021/nl0722370
W. Cai, J.S. White, M.L. Brongersma. Compact, hight-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403 (2009).
https://doi.org/10.1021/nl902701b
U. Kreibig. Electronic properties of small silver particles: the optical constants and their temperature dependence. J. Phys. F 4, 999 (1974).
https://doi.org/10.1088/0305-4608/4/7/007
R.H. Doremus. Optical properties of small gold particles. J. Chem. Phys. 40, 2389 (1964).
https://doi.org/10.1063/1.1725519
R.H. Doremus. Optical properties of small silver particles. J. Chem. Phys. 42, 414 (1965).
https://doi.org/10.1063/1.1695709
P. Mulvaney. Nanoscale Materials in Chemistry. Edited by K.J. Klabunde (Wiley, 2001), P. 121.
J.-S.G.Bouillard,W.Dickson,D.P.O'Connor,G.A.Wurtz, A.V. Zayats. Low-temperature plasmonics of metallic nanostructures. Nano Lett. 12, 1561 (2012).
https://doi.org/10.1021/nl204420s
D.Yu. Fedyanin, A.V. Krasavin, A.V. Arsenin, A.V. Zayats. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. Nano Lett. 12, 2459 (2012).
https://doi.org/10.1021/nl300540x
S. Link, M.A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).
https://doi.org/10.1021/jp984796o
O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, A.O. Pinchuk. Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7, 685 (2012).
https://doi.org/10.1007/s11468-012-9359-z
O.A.Yeshchenko, I.S.Bondarchuk,V.S.Gurin, I.M.Dmitruk, A.V. Kotko. Temperature dependence of the surface
plasmon resonance in gold nanoparticles. Surf. Sci. 608, 275 (2013).
https://doi.org/10.1016/j.susc.2012.10.019
O.A. Yeshchenko, I.S. Bondarchuk, A.A. Alexeenko, A.V. Kotko. Temperature dependence of the surface plasmon resonance in silver nanoparticles. Functional Materials 20, 357 (2013).
https://doi.org/10.15407/fm20.03.357
O.A. Yeshchenko. Temperature effects on the surface plasmon resonance in copper nanoparticles. Ukr. J. Phys. 58, 249 (2013).
https://doi.org/10.15407/ujpe58.03.0249
O.A. Yeshchenko, I.M. Dmitruk, A.M. Dmytruk, A.A. Alexeenko. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng. B 137, 247 (2007).
https://doi.org/10.1016/j.mseb.2006.11.030
O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys. Rev. B 75, 085434 (2007).
https://doi.org/10.1103/PhysRevB.75.085434
V.S. Gurin, A.A. Alexeenko, K.V. Yumashev, P.V. Prokoshin, S.A. Zolotovskaya, G.A. Zhavnerko. Structure and
optical properties of CuxO- and CuxSe-doped sol-gel silica glasses. Mater. Sci. Eng. C 23, 1063 (2003).
https://doi.org/10.1016/j.msec.2003.09.073
U. Kreibig, L. Genzel. Optical absorption of small metallic particles. Surf. Sci. 156, 678 (1985).
https://doi.org/10.1016/0039-6028(85)90239-0
S. Link, M. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).
https://doi.org/10.1021/jp984796o
N.I. Grigorchuk, P.M. Tomchuk. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B 84, 085448 (2011).
https://doi.org/10.1103/PhysRevB.84.085448
K. Ujihara. Reflectivity of metals at high temperatures. J Appl. Phys. 43, 2376 (1972).
https://doi.org/10.1063/1.1661506
R.H. Bube. Electrons in Solids: An Introductory Survey (Academic Press, 1992) [ISBN: 9780080505381].
Z. Li-Jun, G. Jian-Gang, Z. Ya-Pu. Size- and temperature-dependent thermal expansion coefficient of a nanofilm. Chin. Phys. Lett. 26, 066201 (2009).
https://doi.org/10.1088/0256-307X/26/6/066201
J.H. Wray, J.T. Neu. Refractive index of several glasses as a function of wavelength and temperature. J. Opt. Soc. Am. 59, 774 (1969).
https://doi.org/10.1364/JOSA.59.000774
P.B. Johnson, R.W. Christy. Optical constants of noble metals. Phys. Rev. B 6, 4370 (1972).
https://doi.org/10.1103/PhysRevB.6.4370
N.W. Ashcroft, N.D. Mermin. Solid State Physics (Saunders College, 1976) [ISBN: 0030839939].
R.C. Lincoln, K.M. Koliwad, P.B. Ghate. Morse-potential evalution of second- and third-order elastic constants of some cubic metals. Phys. Rev. 157, 463 (1967).
https://doi.org/10.1103/PhysRev.157.463
O.A. Yeshchenko, I.M. Dmitruk, K.P. Grytsenko, V.M. Prokopets, A.V. Kotko, S. Schrader. Influence of interparticle interaction on melting of gold nanoparticles in Au/polytetrafluoroethylene nanocomposites. J. Appl. Phys. 105, 094326 (2009).
https://doi.org/10.1063/1.3125274
O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.V. Kotko. Surface plasmon as a probe for melting of silver nanoparticles. Nanotechnology 21, 045203 (2010).
https://doi.org/10.1088/0957-4484/21/4/045203
M. Schwind, V.P. Zhdanov, I. Zoriс, B. Kasemo. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. Nano Lett. 10, 931 (2010).
https://doi.org/10.1021/nl100044k
C. Kittel. Introduction to Solid State Physics (Willey, 2005) [ISBN: 978-0-471-41526-8].
A. Mooradian. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).
https://doi.org/10.1103/PhysRevLett.22.185
S.W. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, R.L. Whetten. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098 (1998).
https://doi.org/10.1126/science.280.5372.2098
R.S. Ingram, M.J. Hostetler, R.W. Murray, T.G. Schaaff, J.T. Khoury, R.L. Whetten, T.P. Bigioni, D.K. Guthrie, P.N. First. 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM coulomb staircases. J. Am. Chem. Soc. 119, 9279 (1997).
https://doi.org/10.1021/ja972319y
P. Apell, R. Monreal, S. Lundqvist. Photoluminescence of noble metals. Phys. Scr. 38, 174 (1988).
https://doi.org/10.1088/0031-8949/38/2/012
W. Knoll, M.R. Philpott, J.D. Swalen, A. Girlando. Emission of light from Ag metal gratings coated with dye monolayer assemblies. J. Chem. Phys. 75, 4795 (1981).
https://doi.org/10.1063/1.441915
O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, A.O. Pinchuk. Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B 79, 235438 (2009).
https://doi.org/10.1103/PhysRevB.79.235438
A.P. Zhang, J.Z. Zhang, Y. Fang. Photoluminescence from colloidal silver nanoparticles. J. Lumin. 128, 1635 (2008).
https://doi.org/10.1016/j.jlumin.2008.03.014
O. Veron, J.P. Blondeau, N. Abdelkrim, E. Ntsoenzok. Luminescence study of silver nanoparticles obtained by annealed ionic exchange silicate glasses. Plasmonics 5, 213 (2010).
https://doi.org/10.1007/s11468-010-9136-9
O.A. Yeshchenko, I.S. Bondarchuk, M.Yu. Losytskyy, A.A. Alexeenko. Temperature dependence of photoluminescence from silver nanoparticles. Plasmonics 9, 93 (2014).
https://doi.org/10.1007/s11468-013-9601-3
J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, D.F. Kelley. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137 (1998).
https://doi.org/10.1063/1.476360
M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed. The "lightning" gold nanorods: Fluorescence enhancement of
over a million compared to the gold metal. Chem. Phys. Lett. 317, 517 (2000).
https://doi.org/10.1016/S0009-2614(99)01414-1
O.A. Yeshchenko, I.S. Bondarchuk, M.Yu. Losytskyy. Surface plasmon enhanced photoluminescence from copper nanoparticles: influence of temperature. J. Appl. Phys. 116, 054309 (2014).
https://doi.org/10.1063/1.4892432
Q. Darugar, W. Qian, M.A. El-Sayed, M.P. Pileni. Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. J. Phys. Chem. B 110, 143 (2006).
https://doi.org/10.1021/jp0545445
G.T. Boyd, Z.H. Yu, Y.R. Shen. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923 (1986).
https://doi.org/10.1103/PhysRevB.33.7923
F. Hubenthal. Increased damping of plasmon resonances in gold nanoparticles due to broadening of the band structure. Plasmonics 8, 1341 (2013).
https://doi.org/10.1007/s11468-013-9536-8
D.J. Whittle, E. Burstein. Raman-scattering by resonant molecules at smooth metal-surfaces. Bull. Am. Phys. Soc. 26, 777 (1981).
F.T. Xie, H.Y. Bie, L.M. Duan, G.H. Li, X. Zhang, J.Q. Xu. Self-assembly of silver polymers based on flexible isonicotinate ligand at different pH values: syntheses, structures and photoluminescent properties. J. Solid State Chem. 178, 2858 (2005).
https://doi.org/10.1016/j.jssc.2005.06.025
O.A. Yeshchenko, S.V. Kondratenko, V.V. Kozachenko. Surface plasmon enhanced photoluminescence from fullerene C60 film on Au nanoparticles array: resonant dependence on excitation frequency. J. Appl. Phys. 111, 124327 (2012).
https://doi.org/10.1063/1.4731228
A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402 (2007).
https://doi.org/10.1038/nature06230
S. Garg, B. Singh, X. Liu, A. Jain, N. Ravishankar, L. Interrante, G. Ramanath. Metal-dielectric interface tough-ening by catalyzed ring opening in a monolayer. J. Phys. Chem. Lett. 1, 336 (2010).
https://doi.org/10.1021/jz9001357
S. Garg, A. Jain, C. Karthik, B. Singh, R. Teki, V.S. Smentkowski, M.W. Lane, G. Ramanath. Metal-dielectric interface toughening by molecular nanolayer decomposition. J. Appl. Phys. 108, 034317 (2010).
https://doi.org/10.1063/1.3437648
D.A. Zatsepin, V.S. Kortov, E.Z. Kurmaev, N.V. Gavrilov, R.G. Wilks, A. Moewes. X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions. Phys. Solid State 50, 2322 (2008).
https://doi.org/10.1134/S1063783408120172
D. Dalacu, M. Martinu. Optical properties of discontinuous gold films: finite-size effects. J. Opt. Soc. Am. B 18, 85 (2001).
https://doi.org/10.1364/JOSAB.18.000085
O.A. Yeshchenko, I.S. Bondarchuk, V.V. Kozachenko, M.Yu. Losytskyy. Photoluminescence of rhodamine 6G in
plasmonic field of Au nanoparticles: temperature effects. J. Lumin. 158, 294 (2015).
https://doi.org/10.1016/j.jlumin.2014.10.018
O.A. Yeshchenko, I.S. Bondarchuk, V.V. Kozachenko, M.Yu. Losytskyy. Sensing the temperature influence on
plasmonic field of metal nanoparticles by photoluminescence of fullerene C60 in layered C60/Au system. J. Appl. Phys. 117, 153102 (2015).
https://doi.org/10.1063/1.4918554
A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006).
https://doi.org/10.1007/s11671-006-9015-7
A.O. Govorov, H.H. Richardson. Generating heat with metal nanoparticles. Nano Today 2, 30 (2007).
https://doi.org/10.1016/S1748-0132(07)70017-8
Z. Fang, Y.R. Zhen, O. Neumann, A. Polman, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas. Evolution of light-
induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736 (2013).
https://doi.org/10.1021/nl4003238
B. Choudhuri, A. Mondal, J.C. Dhar, N.K. Singh, T. Goswami, K.K. Chattopadhyay. Enhanced photocurrent from generated photothermal heat in indium nanoparticles embedded TiO2 film. Appl. Phys. Lett. 102, 233108 (2013).
https://doi.org/10.1063/1.4811360
H.A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205 (2010).
https://doi.org/10.1038/nmat2629
D. Erickson, D. Sinton, D. Psaltis. Optofluidics for energy applications. Nature Photonics 5, 583 (2011).
https://doi.org/10.1038/nphoton.2011.209
J.A. Schuller, T. Taubner, M.L. Brongersma. Optical antenna thermal emitters. Nature Photonics 3, 658 (2009).
https://doi.org/10.1038/nphoton.2009.188
J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417 (2009).
https://doi.org/10.1021/nl902711n
P. Christopher, H.L. Xin, S. Linic. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467 (2011).
https://doi.org/10.1038/nchem.1032
S. Ibrahimkutty, J. Kim, M. Cammarata, F. Ewald, J. Choi, H. Ihee, A. Plech. Ultrafast structural dynamics of the photocleavage of protein hybrid nanoparticles. ACS Nano 5, 3788 (2011).
https://doi.org/10.1021/nn200120e
J. Lee, A.O. Govorov, N.A. Kotov. Nanoparticle assemblies with molecular springs: a nanoscale thermometer. Angew. Chem. Int. Ed. 44, 7439 (2005).
https://doi.org/10.1002/anie.200501264
Z.Z.J. Lim, J.E.J. Li, C.T. Ng, L.Y.L. Yung, B.H. Bay. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 32, 983 (2011).
https://doi.org/10.1038/aps.2011.82
G. von Maltzahn, J.-H. Park, K.Y. Lin, N. Singh, C. Schwoppe, R. Mesters, W.E. Berdel, E. Ruoslahti, M.J. Sailor, S.N. Bhatia. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater. 10, 545 (2011).
https://doi.org/10.1038/nmat3049
J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417 (2009).
https://doi.org/10.1021/nl902711n
D.A. Boyd, L. Greengard, L. Brongersma, M.Y. El-Naggar, D.G. Goodwin. Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592 (2006).
https://doi.org/10.1021/nl062061m
C. Li, Z.Wang, P.I.Wang, Y. Peles, N. Koratkar, G.P. Peterson. Nanostructured copper interfaces for enhanced boiling. Small 4, 1084 (2008).
https://doi.org/10.1002/smll.200700991
H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139 (2009).
https://doi.org/10.1021/nl8036905
M.T. Carlson, A.J. Green, H.H. Richardson. Superheating water by CW excitation of gold nanodots. Nano Lett. 12, 1534 (2012).
https://doi.org/10.1021/nl2043503
E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R.A. Drezek, J.H. Hafner, D.O. Lapotko. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4, 2109 (2010).
https://doi.org/10.1021/nn1000222
O.A. Yeshchenko, V.V. Kozachenko. Light-induced heating of dense 2D ensemble of gold nanoparticles: dependence on detuning from surface plasmon resonance. J. Nanopart. Res. 17, 296 (2015).
https://doi.org/10.1007/s11051-015-3101-7
O.A. Yeshchenko, N.V. Kutsevol, A.P. Naumenko. Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics 11, 345 (2016).
https://doi.org/10.1007/s11468-015-0034-z
N. Kutsevol, T. Bezugla, M. Bezuglyi, M. Rawiso. Starlike dextran-graft-(polyacrylamide-copolyacrylic acid) copolymers. Macromol Symp. 82, 317 (2012).
https://doi.org/10.1002/masy.201100087
V. Chumachenko, N. Kutsevol, M. Rawiso, M. Schmutz, C. Blanck. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res. Lett. 9, 164 (2014).
https://doi.org/10.1186/1556-276X-9-164
Y.-J. Chen, M.-C. Lee, C.-M. Wang. Dielectric function dependence on temperature for Au and Ag. Japan J. Appl. Phys. 53, 08MG02 (2014).
https://doi.org/10.7567/JJAP.53.08MG02
I. Thormahlen, J. Straub, U. Grigull. Refractive index of water and its dependence on wavelength, temperature, and density. J. Phys. Chem. Refer. Data 14, 933 (1985).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.