Statistical Analysis of Normally Distributed Data with a Limited Scattering Interval of Values Converted by Direct g(x) = x2; cos x; ax and Inverse Functions

Authors

  • P. Kosobutskyy Lviv Polytechniс National University

DOI:

https://doi.org/10.15407/ujpe67.5.346

Keywords:

normal distribution, mathematical expectation, variance, random variables, calculation and transfer of errors, transformation of a random variable with elementary functions

Abstract

The work is devoted to the theoretical analysis of the correct application of the model of a continuous normally distributed random variable in the substantiation of the so-called error transfer formulas in the problem of a statistical processing of experimental data. Attention is paid to the role of limiting the scattering interval of values of a random variable subjected to nonlinear direct g(X) transformation by elementary functions X2; aX and cos X, as well as the inverse g-1(X) = √X, arccos X, loga X to them. The regularities of the statistical averaging of the data obtained by the disorder of the Taylor transform functions are studied. To confirm the validity of the obtained results, the method of quadratic functional optimization is used.

References

D.J. Hudson. Statistics. Lectures on Elementary Statistics and Probability (CERN, 1964).

Z. Pawlowsky. Wstep do Statystyki Matematycznej (Statystyk, 1967).

I.M. Kodolov, S.T. Khudyakov. Teoreticheskie osnovy verojtnostnyh metodov v inzhenerno-economicheskich zadachah. Funkcional'nye pereobrazovanij sluchajnyh velechyn i sluchajnye fynkcii (MADI, 1985).

V.I. Romanenko, N.V. Kornilovska. On the accuracy of error propagation calculations by analytic formulas obtained for the inverse transformation. Ukr. J. Phys. 64 (3), 217 (2019).

https://doi.org/10.15407/ujpe64.3.217

G.G. Rode. Propagation of the measurement errors andmeasured means of physical quantities for the elementaryfunctions x2 and √x Ukr. J. Phys. 62, 148 (2017).

https://doi.org/10.15407/ujpe62.02.0184

G.G. Rode. Propagation of measurement errors and measured means of a physical quantity for the elementary functions cos(x) and arccos(x) Ukr. J. Phys. 61, 345 (2016).

https://doi.org/10.15407/ujpe61.04.0345

G.G. Rode. Propagation of the measurement error and the measured mean of a physical quantity for elementary functions ax and loga x. J. Phys. 64 (5), 345 (2019).

https://doi.org/10.15407/ujpe64.5.371

P.S. Kosobutskyy. On the simulation of the mathematical expectation and variance of samples for gaussiandistributed random variables. Ukr. J. Phys. 62 (2), 827 (2017).

https://doi.org/10.15407/ujpe62.09.0827

P.S. Kosobutsky. Analytical relations for the mathematical expectation and variance of a standard distributed random variable subjected to the √X transformation. Ukr. J. Phys. 63, 215 (2018).

https://doi.org/10.15407/ujpe63.3.215

I.I. Gorban. Probability Theory and Mathematical Statistics for Scientists and Engineers (NAS of Ukraine, IPPMMiS, 2003).

E. Ng, M. Geller. A table o f integrals of the error functions. J. Research of the National Bureau of Standerds-B. Math. Sci. B 73 (1), 1 (1969).

https://doi.org/10.6028/jres.073B.001

From Web Resource: Table of Integrals. 2014 From http://integral-table.com

A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev. Integraly i Rjady. Elementarnye Funkcii (Nauka, 1981).

From Web Resource: http://mathworld.wolfram.com/GaussianIntegral.html

T. Lang. Twently errors even you can find in biomedical research articles. Croatian Medical J. 45 (4), 361 (2004).

Published

2022-08-29

How to Cite

Kosobutskyy, P. (2022). Statistical Analysis of Normally Distributed Data with a Limited Scattering Interval of Values Converted by Direct g(x) = x2; cos x; ax and Inverse Functions. Ukrainian Journal of Physics, 67(5), 346. https://doi.org/10.15407/ujpe67.5.346

Issue

Section

General physics