Galaxy Rotation Curves in the µ-Deformation Based Approach to Dark Matter

Authors

  • A. M. Gavrilik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • I. I. Kachurik Khmel’nyts’kyi National University
  • M. V. Khelashvili Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.11.1042

Keywords:

dark matter, м-deformation, deformed Lane–Emden equation, galaxy rotation curves

Abstract

We elaborate further the м-deformation-based approach to the modeling of dark matter, in addition to the earlier proposed use of м-deformed thermodynamics. Herein, we construct м-deformed analogs of the Lane–Emden equation (for density profiles) and find their solutions. Using these, we plot the rotation curves for a number of galaxies. Different curves describing the chosen galaxies are labeled by respective (different) values of the deformation parameter м. As a result, the use of м-deformation leads to the improved agreement with observational data. For all the considered galaxies, the obtained rotation curves (labeled by м) agree better with data, as compared to the well-known Bose–Einstein condensate model results of T. Harko. Besides, for five of the eight cases of galaxies, we find a better picture for rotation curves, than the corresponding Navarro–Frenk–White (NFW) curves. The possible physical meaning of the parameter м basic for this version of м-deformation is briefly discussed.

References

A. Suarez, V. Robles, T. Matos. A review on the scalar field/Bose-Einstein condensate dark matter model. Astroph. and Space Sci. Proc. 38, 107 (2013). https://doi.org/10.1007/978-3-319-02063-1_9

L. Hui, J. Ostriker, S. Tremaine, E. Witten. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017). https://doi.org/10.1103/PhysRevD.95.043541

A. Diez-Tejedor, A. Gonzalez-Morales, S. Profumo. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter. Phys. Rev. D 90, 043517 (2014). https://doi.org/10.1103/PhysRevD.90.043517

E. Kun, Z. Keresztes, S. Das, L.A. Gergely. Slowly rotating Bose-Einstein Condensate confronted with the rotation curves of 12 dwarf galaxies. Symmetry 10, 520 (2018). https://doi.org/10.3390/sym10100520

D. Bettoni, M. Colombo, S. Liberati. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case. JCAP 02, 004 (2014). https://doi.org/10.1088/1475-7516/2014/02/004

D. Bettoni, S. Liberati, L. Sindoni. Extended ?CDM: generalized non-minimal coupling for dark matter fluids. JCAP 11, 007 (2011). https://doi.org/10.1088/1475-7516/2011/11/007

Z. Ebadi, B. Mirza, H. Mohammadzadeh. Infinite statistics condensate as a model of dark matter. JCAP 11, 057 (2013). https://doi.org/10.1088/1475-7516/2013/11/057

A. Gavrilik, I. Kachurik, M. Khelashvili, A. Nazarenko. Condensate of м-Bose gas as a model of dark matter. Physica A 506, 835 (2018). https://doi.org/10.1016/j.physa.2018.05.001

T. Harko. Bose-Einstein condensation of dark matter solves the core/cusp problem. JCAP 11, 022 (2011). https://doi.org/10.1088/1475-7516/2011/05/022

A.P. Rebesh, I.I. Kachurik, A.M. Gavrilik. Elements of м-calculus and thermodynamics of м-Bose gas model. Ukr. J. Phys. 58, 1182 (2013). https://doi.org/10.15407/ujpe58.12.1182

Se-Heon Oh, W. de Blok, E. Brinks, F. Walter, R. Jr. Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, No. 6, 193 (2011). https://doi.org/10.1088/0004-6256/141/6/193

K. Oman, J. Navarro, A. Fattahi, C. Frenk, T. Sawala, S. White, R. Bower, R. Crain, M. Furlong, M. Schaller, J. Schaye, T. Theuns. The unexpected diversity of dwarf galaxy rotation curves. MNRAS 452, 3650 (2015). https://doi.org/10.1093/mnras/stv1504

R. Swaters, M. Verheijen, M. Bershady, D. Andersen. The kinematics in the core of the low surface brightness galaxy DDO 39. Astrophys. J. 587, L19 (2003). https://doi.org/10.1086/375045

S. Deser, R.P. Woodard. Nonlocal cosmology. Phys. Rev. Lett. 99, 111301 (2007). https://doi.org/10.1103/PhysRevLett.99.111301

F.W. Hehl, B. Mashhoon. Nonlocal gravity simulates dark matter. Phys. Lett. B 673, 279 (2009). https://doi.org/10.1016/j.physletb.2009.02.033

I. Arraut. Can a non-local model of gravity reproduce Dark Matter effects in agreement with MOND? Int. J. Mod. Phys. D 23, 1450008 (2014). https://doi.org/10.1142/S0218271814500084

K. Fernandes, A. Mitra. Electrovacuum solutions in non-local gravity. Phys. Rev. D 97, 105003 (2018). https://doi.org/10.1103/PhysRevD.97.105003

S.Y. Park. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation. Phys. Rev D 97, 044006 (2018). https://doi.org/10.1103/PhysRevD.97.044006

Published

2019-11-25

How to Cite

Gavrilik, A. M., Kachurik, I. I., & Khelashvili, M. V. (2019). Galaxy Rotation Curves in the µ-Deformation Based Approach to Dark Matter. Ukrainian Journal of Physics, 64(11), 1042. https://doi.org/10.15407/ujpe64.11.1042

Issue

Section

Fields and elementary particles