Formation of Nanocrystalline Silicon in Tin-Doped Amorphous Silicon Films
DOI:
https://doi.org/10.15407/ujpe65.3.236Keywords:
nanocrystalline silicon, metal-induced crystallization, tinAbstract
The process of crystalline silicon phase formation in tin-doped amorphous silicon (a-SiSn) films has been studied. The inclusions of metallic tin are shown to play a key role in the crystallization of researched a-SiSn specimens with Sn contents of 1–10 at% at temperatures of 300–500 ∘C. The crystallization process can conditionally be divided into two stages. At the first stage, the formation of metallic tin inclusions occurs in the bulk of as-precipitated films owing to the diffusion of tin atoms in the amorphous silicon matrix. At the second stage, the formation of the nanocrystalline phase of silicon occurs as a result of the motion of silicon atoms from the amorphous phase to the crystalline one through the formed metallic tin inclusions. The presence of the latter ensures the formation of silicon crystallites at a much lower temperature than the solid-phase recrystallization temperature (about 750 ∘C). A possibility for a relation to exist between the sizes of growing silicon nanocrystallites and metallic tin inclusions favoring the formation of nanocrystallites has been analyzed.
References
D. Kovalev, H. Heckler, G. Polisski, J. Diener, F.Koch. Optical properties of silicon nanocrystals. Opt. Mater. 17, 35 (2001). https://doi.org/10.1016/S0925-3467(01)00017-9
V.V.Voitovych, R.M.Rudenko, A.G.Kolosiuk, M.M.Krasko, V.O. Juhimchuk, M.V. Voitovych, S.S. Ponomarov, A.M. Kraitchinskii, V.Yu. Povarchuk, V.A. Makara. Effect of tin on the processes of silicon-nanocrystal formation in amorphous SiOx thin-film matrices. Semiconductors 48, 73 (2014). https://doi.org/10.1134/S1063782614010242
V.V. Voitovych, R.M. Rudenko, V.O. Yuchymchuk, M.V. Voitovych, M.M. Krasko, A.G. Kolosiuk, V.Yu. Povarchuk, I.M. Khachevich, M.P. Rudenko. Effect of tin on structural transformations in the thin-film silicon suboxide matrix, Ukr. J. Phys. 61, 980 (2016).
V. Svrcek, A. Slaoui, J.-C. Muller. Silicon nanocrystals as light converter for solar cells. Thin Solid Films 451-452, 384 (2004). https://doi.org/10.1016/j.tsf.2003.10.133
A. Kherodia, A.K. Panchal. Analysis of thickness-depedent optical parameters of a-Si:H/nc-Si:H multilayer thin films. Mater. Renew. Sustain. Energy 6, 23 (2017). https://doi.org/10.1007/s40243-017-0107-3
A. Shan, E. Vallat-Shauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, M. Vanechek. Intrinsic microcrystalline silicon (мc-Si:H) deposited by VHF-GD (very high frequency-glow discharge): A new material for photovoltaics and optoelectronics. Mater. Sci. Eng. 69-70, 219 (2000). https://doi.org/10.1016/S0921-5107(99)00299-8
V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Yu. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, V.V. Strelchuk. The effect of Sn impurity on the optical and structural properties of thin silicon films, Semiconductors 45, .1281 (2010). https://doi.org/10.1134/S1063782611100253
R.M. Rudenko, V.V. Voitovych, M.M. Kras'ko, A.G. Kolosyuk, A.M. Kraichynskyi, V.O. Yukhymchuk, V.A. Makara. Influence of high temperature annealing on the structure and the intrinsic absorption edge of thin-film silicon doped with tin. Ukr. J. Phys. 58, 769 (2013).
R.M.Rudenko, M.M.Kras'ko, V.V.Voitovych, A.G.Kolosyuk, V.YU. Povarchuk, A.M. Kraichynskyi, V.O. Yukhymchuck, V.YA. Bratus', M.V. Voitovych, I.A. Zaloilo. Behavior of hydrogen during crystallization of thin silicon films doped with tin. Ukr. J. Phys. 58, 1165 (2013).
T.J. Konno, R. Sinclair. Crystallization of silicon in aluminium/amorphous-silicon multilayers, Phil. Mag. B 66, 749 (1992). https://doi.org/10.1080/13642819208220126
O. Nast, S.R. Wenham. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminium-induced crystallization. J. Appl. Phys. 88, 124 (2000). https://doi.org/10.1063/1.373632
M. Jeon, C. Jeong, K. Kamisako. Tin induced crystallisation of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 26, 875 (2010). https://doi.org/10.1179/026708309X12454008169500
A. Sarikov. Metal induced crystallization mechanism of the metal catalyzed growth of silicon wire-like crystals. Appl. Phys. Lett. 99, 143102 (2011). https://doi.org/10.1063/1.3644981
Jae-Hyun Shim, Nam-Hee Cho. Formation of nanocrystallites in the nc-Si films by co-sputtering aluminium and silicon. Solid State Phenom. 124-126, 495 (2007). https://doi.org/10.4028/www.scientific.net/SSP.124-126.495
Fuyu Lin, Miltiadis. Crystallization of tin-implanted amorphous silicon thin films. Mat. Res. Soc. Symp. Proc. 279, 553 (1993). https://doi.org/10.1557/PROC-279-553
Jong-Hyeok Park, M. Kurosawa, N. Kawabata, M. Miyao, T. Sadoh. Au-induced low-temperature (∼250∘C) crystallization of Si on insulator through layer-exchange process, Electrochem. Sol.-St. Lett. 14, H232 (2011). https://doi.org/10.1149/1.3562275
R.W. Olesinski, G.J. Abbaschian. The Si-Sn (silicon-tin) system. Bull. Alloy Phase Diagr. 5, 273 (1984). https://doi.org/10.1007/BF02868552
P. Mishra, K.P. Jain. First- and second-order Raman scattering in nanocrystalline silicon. Phys. Rev. B 64, 073304 (2001). https://doi.org/10.1103/PhysRevB.64.073304
H. Campbell, P.M. Fauchet. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors, Solid State Commun. 58, 739 (1986). https://doi.org/10.1016/0038-1098(86)90513-2
S.V. Gajsler, O.I. Semenova, R.G. Sharafutdinov, B.A. Kolesov. Analysis of Raman spectra of amorphous-nanocrystalline silicon films, Phys. Solid State 46, 1528 (2004). https://doi.org/10.1134/1.1788789
G.L. Olson, J.A. Roth. Kinetics of solid phase crystallization in amorphous silicon, Mater. Sci. Rep. 3, 1 (1988). https://doi.org/10.1016/S0920-2307(88)80005-7
G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, D. Comedi, I. Chambouleyron. Local coordination of Ga impurity in hydrogenated amorphous germanium studied by extended x-ray absorption fine-structure spectroscopy. Appl. Phys. Lett. 74, 281 (1999). https://doi.org/10.1063/1.122999
Linwei Yu, B. O'Donnell, P.-J. Alet, S. Conesa-Boj, F. Peir'o, J. Arbiol, Pere Roca i Cabarrocas. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology 20, 225604 (2009). https://doi.org/10.1088/0957-4484/20/22/225604
A. Hiraki. Low temperature reactions at Si/metal interfaces: What is going on at the interfaces? Surf. Sci. Rep. 3, 357 (1984). https://doi.org/10.1016/0167-5729(84)90003-7
W. Knaepen, S. Gaudet, C. Detavernier, R.L. Van Meirhaeghe, J.J. Sweet, C. Lavoie. In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. J. Appl. Phys. 105, 083532 (2009). https://doi.org/10.1063/1.3110722
G. Neumann, C. Tuijn. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data (Elsevier, 2009) [ISBN: 978-1-85617-511-1]. https://doi.org/10.1016/S1470-1804(08)00006-0
S. Sharafat, N. Ghoniem. Summary of thermo-physical properties of sn, and compounds of Sn-H, Sn-O, Sn-C, Sn-Li, and Sn-Si and comparison of properties of Sn, Sn-Li, Li, and Pb-Li. Report SS/NG: UCLA-UCMEP-00-31 (UCLA, 2000).
P. Kringhøj, R.G. Elliman. Diffusion of ion implanted Sn in Si, Si1−xGex, and Ge. Appl. Phys. Lett. 65, 324 (1994). https://doi.org/10.1063/1.112360
R.P. Thornton, R.G. Elliman, J.S. Williams. Amorphousto-polycrystalline phase transformations in Sn-implanted silicon. J. Mater. Res. 5, 1003 (1990). https://doi.org/10.1557/JMR.1990.1003
G.S. Kulikov, K.Kh. Khodzhaev. Effect of doping with phosphorus on tin diffusion in a-Si: H films. Fiz. Tekhn. Poluprovodn. 29, 961 (1995) (in Russian).
S. Coffa, L. Calcagno, S.U. Campisano, G. Calleri, G. Ferla. Diffusion of ion-implanted gold in p-type silicon. J. Appl. Phys. 64, 6291 (1988). https://doi.org/10.1063/1.342087
J. Hirvonen, A. Anttila. Self-diffusion in silicon as probed by the (p, y) resonance broadening method. Appl. Phys. Lett. 35, 703 (1979). https://doi.org/10.1063/1.91261
R.B. Iverson, R. Reif. Recrystallization of amorphized polycrystalline silicon films on SiO2: Temperature dependence of the crystallization parameters. J. Appl. Phys. 62, 1675 (1987). https://doi.org/10.1063/1.339591
F. Strauß, L. D¨orrer, Th. Geue, J. Stahn, A. Koutsioubas, S. Mattauch, H. Schmidt. Self-diffusion in amorphous silicon. Phys. Rev. Lett. 116, 025901 (2016). https://doi.org/10.1103/PhysRevLett.116.025901
U. K¨oster. Crystallization of amorphous silicon films. Phys. Stat. Solidi A 48, 313 (1978). https://doi.org/10.1002/pssa.2210480207
E. Nygren, A.P. Pogany, K.T. Short, J.S. Williams, R.G. Elliman, J.M. Poate. Impurity-stimulated crystallization and diffusion in amorphous silicon. Appl. Phys. Lett. 52, 439 (1988). https://doi.org/10.1063/1.99436
E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, D.C. Jacobson. Heat of crystallization and melting point of amorphous silicon. Appl. Phys. Lett. 42, 698 (1983). https://doi.org/10.1063/1.94077
M.F. Fyhn, J. Chevallier, A.N. Larsen. a-Sn and b-Sn precipitates in annealed epitaxial Si0.95Sn0.05. Phys. Rev. B 60, 5770 (1999). https://doi.org/10.1103/PhysRevB.60.5770
T.H. Yeh, S.M. Hu, R.H. Kastl. Diffusion of tin into silicon. J. Appl. Phys. 39, 4266 (1968). https://doi.org/10.1063/1.1656959
J. K¨uhnle, R.B. Bergmann, J.H. Werner. Role of critical size of nuclei for liquid-phase epitaxy on polycrystalline Si films, J. Cryst. Growth 173, 62 (1997). https://doi.org/10.1016/S0022-0248(96)00783-X
R. Sinclair, J. Morgiel, A.S. Kirtikar, I.-W.Wu, A. Chiang. Direct observation of crystallization in silicon by in situ high-resolution electron microscopy. Ultramicroscopy 51, 41 (1993). https://doi.org/10.1016/0304-3991(93)90134-J
C.H. Ma, R.A. Swalin. Self diffusion in liquid tin. J. Chem. Phys. 36, 3014 (1962). https://doi.org/10.1063/1.1732419
H. Qinghengt, E.S. Yang, H. Izmirliyan. Diffusivity and growth rate of silicon in solid-phase epitaxy with an aluminum medium. Solid-State Electron. 25, 1187 (1982). https://doi.org/10.1016/0038-1101(82)90078-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.