Contact Interactions in One-Dimensional Quantum Mechanics: a Family of Generalized б'-Potentials

Authors

  • A. V. Zolotaryuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.11.1021

Keywords:

point interactions, transmission, resonant tunneling, heterostructures

Abstract

A “one-point” approximation is proposed to investigate the transmission of electrons through the extra thin heterostructures composed of two parallel plane layers. The typical example is the bilayer for which the squeezed potential profile is the derivative of Dirac’s delta function. The Schr¨odinger equation with this singular one-dimensional profile produces a family of contact (point) interactions each of which (called a “distributional” б′-potential) depends on the way of regularization. The discrepancies widely discussed so far in the literature regarding the family of delta derivative potentials are eliminated using a two-scale power-connecting parametrization of the bilayer potential that enables one to extend the family of distributional б′-potentials to a whole class of “generalized” б′-potentials. In a squeezed limit of the bilayer structure to zero thickness, the resonant tunneling through this structure is shown to occur in the form of sharp peaks located on the sets of Lebesgue’s measure zero (called resonance sets). A four-dimensional parameter space is introduced for the representation of these sets. The transmission on the complement sets in the parameter space is shown to be completely opaque.

References

F.A. Berezin, L.D. Faddeev. Remark on the Schr?odinger equation with singular potential. Dokl. AN SSSR, 137, 1011 (1961).

Y.N. Demkov, V.N. Ostrovskii. Zero-Range Potentials and Their Applications in Atomic Physics (Plenum Press, 1988). https://doi.org/10.1007/978-1-4684-5451-2

S. Albeverio, F. Gesztesy, R. Hoegh-Krohn et al. Solvable Models in Quantum Mechanics, with appendix by P. Exner (Amer. Math. Soc., 2005). https://doi.org/10.1090/chel/350

S. Albeverio, P. Kurasov. Singular Perturbations of Differential Operators: Solvable Schr?odinger-Type Operators (Cambridge Univ. Press, 1999). https://doi.org/10.1017/CBO9780511758904

D.J. Griffiths. Boundary conditions at the derivative of a delta function. J. Phys. A: Math. Gen. 26, 2265 (1993). https://doi.org/10.1088/0305-4470/26/9/021

P. Kurasov. Distribution theory for discontinuous test functions and differential operators with generalized coefficients. J. Math. Anal. Appl. 201, 297 (1996). https://doi.org/10.1006/jmaa.1996.0256

S. Albeverio, L. Dabrowski, P. Kurasov. Symmetries of Schr?odinger operators with point interactions. Lett. Math. Phys. 45, 33 (1998). https://doi.org/10.1023/A:1007493325970

F.A.B. Coutinho, Y. Nogami, L. Tomio. Many-body system with a four-parameter family of point interactions in one dimension. J. Phys. A: Math. Gen. 32, 4931 (1999). https://doi.org/10.1088/0305-4470/32/26/311

S. Albeverio, L. Nizhnik. On the number of negative eigen-values of a one-dimensional Schr?odinger operator with point interactions. Lett. Math. Phys. 65, 27 (2003).

L.P. Nizhnik. A Schr?odinger operator with б?-interaction. Funct. Anal. Appl. 37, 72 (2003). https://doi.org/10.1023/A:1022932229094

S. Albeverio, L. Nizhnik. Schr?odinger operators with non-local point interactions. J. Math. Anal. Appl. 332, 884 (2007). https://doi.org/10.1016/j.jmaa.2006.10.070

M. Gadella, J. Negro, L.M. Nieto. Bound states and scattering coefficients of the ?аб(x)+bб?(x) potential. Phys. Lett. A 373, 1310 (2009). https://doi.org/10.1016/j.physleta.2009.02.025

M. Gadella, M.L. Glasser, L.M. Nieto. One dimensional models with a singular potential of the type ?аб(x)+bб?(x). Int. J. Theor. Phys. 50, 2144 (2011). https://doi.org/10.1007/s10773-010-0641-6

R.-J. Lange. Potential theory, path integrals and the Laplacian of the indicator. J. High Energy Phys. 11, 1 (2012). https://doi.org/10.1007/JHEP11(2012)032

J.F. Brasche, L.P. Nizhnik. One-dimensional Schr?odinger operators with general point interactions. Methods Funct. Anal. Topology 19, 4 (2013).

J.T. Lunardi, L.A. Manzoni, W. Monteiro. Remarks on point interactions in quantum mechanics. J. Phys. Conf. Series 410, 012072 (2013). https://doi.org/10.1088/1742-6596/410/1/012072

M. Calcada M, J.T. Lunardi, L.A. Manzoni et al. Distributional approach to point interactions in one-dimensional quantum mechanics. Front. Phys. (2014) 2, 23 (2014). https://doi.org/10.3389/fphy.2014.00023

R.-J. Lange. Distribution theory for Schr?odinger's integral equation. J. Math. Phys. 56, 122105 (2015). https://doi.org/10.1063/1.4936302

V.L. Kulinskii, D.Y. Panchenko. Physical structure of point-like interactions for one-dimensional Schr?odinger operator and the gauge symmetry. Physica B (2015) 472, 78 (2015). https://doi.org/10.1016/j.physb.2015.05.011

P. Seba. Some remarks on the б?-interaction in one dimension. Rep. Math. Phys. 24, 111 (1986). https://doi.org/10.1016/0034-4877(86)90045-5

T. Cheon, T. Shigehara. Realizing discontinuous wave functions with renormalized short-range potentials. Phys. Lett. A 243, 111 (1998). https://doi.org/10.1016/S0375-9601(98)00188-1

P. Exner, H. Neidhardt, V.A. Zagrebnov. Potential approximations to б?: An inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys. (2001) 224, 593 (2001). https://doi.org/10.1007/s002200100567

P.L. Christiansen, N.C. Arnbak, A.V. Zolotaryuk et al. On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function. J. Phys. A: Math. Gen. 36, 7589 (2003). https://doi.org/10.1088/0305-4470/36/27/311

A.V. Zolotaryuk, P.L. Christiansen, S.V. Iermakova. Scattering properties of point dipole interactions. J. Phys. A: Math. Gen. 39, 9329 (2006). https://doi.org/10.1088/0305-4470/39/29/023

F.M. Toyama, Y. Nogami. Transmission-reflection problem with a potential of the form of the derivative of the delta function. J. Phys. A: Math. Theor. 40, F685 (2007). https://doi.org/10.1088/1751-8113/40/29/F05

Y.D. Golovaty, S.S. Man'ko. Solvable models for the Schr?odinger operators with б?-like potentials. Ukr. Math. Bull. 6, 169 (2009).

Y.D. Golovaty, R.O. Hryniv. On norm resolvent convergence of Schr?odinger operators with б?-like potentials. J. Phys. A: Math. Theor. 43, 155204 (2010); 44, 049802 (2011). https://doi.org/10.1088/1751-8113/44/4/049802

A.V. Zolotaryuk. Boundary conditions for the states with resonant tunnelling across the б?-potential. Phys. Lett. A 374, 1636 (2010). https://doi.org/10.1016/j.physleta.2010.02.005

Y.D. Golovaty, R.O. Hryniv. Norm resolvent convergence of singularly scaled Schr?odinger operators and б?-potentials. Proc. Royal Soc. Edinb. 143A, 791 (2013). https://doi.org/10.1017/S0308210512000194

Y. Golovaty. 1D Schr?odinger operators with short range interactions: two-scale regularization of distributional potentials. Integr. Equ. Oper. Theory 75, 341 (2013). https://doi.org/10.1007/s00020-012-2027-z

A.V. Zolotaryuk, Y. Zolotaryuk. Intrinsic resonant tunneling properties of the one-dimensional Schr?odinger operator with a delta derivative potential. Int. J. Mod. Phys. B 28, 1350203 (2014). https://doi.org/10.1142/S0217979213502032

A.V. Zolotaryuk, Y. Zolotaryuk. A zero-thickness limit of multilayer structures: a resonant-tunnelling б?-potential. J. Phys. A: Math. Theor. 48, 035302 (2015). https://doi.org/10.1088/1751-8113/48/3/035302

A.V. Zolotaryuk. Families of one-point interactions resulting from the squeezing limit of the sum of two- and three-delta-like potentials. J. Phys. A: Math. Theor. 50, 225303 (2017). https://doi.org/10.1088/1751-8121/aa6dc2

A.V. Zolotaryuk. A phenomenon of splitting resonant-tunneling one-point interactions. Ann. Phys. (NY) 396, 479 (2018). https://doi.org/10.1016/j.aop.2018.07.030

A.V. Zolotaryuk, G.P. Tsironis, Y. Zolotaryuk. Point interactions with bias potentials. Front. Phys. 7, 1 (2019). https://doi.org/10.3389/fphy.2019.00087

Y. Golovaty. Two-parametric б?-interactions: approximation by Schr?odinger operators with localized rank-two perturbations. J. Phys. A: Math. Theor. 51, 255202 (2018). https://doi.org/10.1088/1751-8121/aac110

S. Albeverio, L. Nizhnik. Schr?odinger operators with non-local potentials. Methods Funct. Anal. Topology 19, 199 (2013).

S. Albeverio, S. Fassari, F. Rinaldi. A remarkable spectral feature of the Schr?odinger Hamiltonian of the harmonic oscillator perturbed by an attractive б?-interaction centred at the origin: double degeneracy and level crossing. J. Phys. A: Math. Theor. 46, 385305 (2013). https://doi.org/10.1088/1751-8113/46/38/385305

S. Albeverio, F. Fassari, F. Rinaldi. The Hamiltonian of the harmonic oscillator with an attractive б?-interaction centred at the origin as approximated by the one with a triple of attractive б-interactions. J. Phys. A: Math. Theor. 49, 025302 (2016). https://doi.org/10.1088/1751-8113/49/2/025302

S.H. Patil. Schr?odinger equation with б? and б?? potentials. Phys. Scripta 49, 645 (1994). https://doi.org/10.1088/0031-8949/49/6/002

A.V. Zolotaryuk. An explicit realization of resonant-tunnelling б??-potentials. J. Phys. A: Math. Theor. 48, 255304 (2015). https://doi.org/10.1088/1751-8113/48/25/255304

Published

2019-11-25

How to Cite

Zolotaryuk, A. V. (2019). Contact Interactions in One-Dimensional Quantum Mechanics: a Family of Generalized б’-Potentials. Ukrainian Journal of Physics, 64(11), 1021. https://doi.org/10.15407/ujpe64.11.1021

Issue

Section

Fields and elementary particles