Graphene Wetting by Methanol or Water

Authors

  • A. G. Barylka Kryvyi Rig National University
  • R. M. Balabai Kryvyi Rig National University

DOI:

https://doi.org/10.15407/ujpe60.10.1049

Keywords:

electron density functional method, pseudopotential method, graphene, water, methanol

Abstract

The spatial distributions of the valence-electron density and the total energy reliefs for water (or methanol) migration on the free surface of graphene are obtained, by using the electron density functional and ab initio pseudopotential methods. Water and methanol molecules are found to migrate along the surface of graphene with an energy relief with barriers and wells. The interaction of water molecules located on the opposite sides of the graphene plane through the regions in the graphene plane with a low electron density is detected. The hovering of molecule over the graphene plane is found to locally change plane’s conductivity. The estimate of energy costs during the propagation of adsorbent molecules over the graphene surface testifies to the graphene hydrophobicity.

Published

2019-01-10

How to Cite

Barylka, A. G., & Balabai, R. M. (2019). Graphene Wetting by Methanol or Water. Ukrainian Journal of Physics, 60(10), 1049. https://doi.org/10.15407/ujpe60.10.1049

Issue

Section

Nanosystems