Dielectric Function of a Quantum-Confined Thin Film with a Modified Pöschel–Teller Potential

Authors

  • Kh. A. Gasanov Azerbaijan State Pedagogical University, Academy of the Ministry of Emergency Situations of the Republic of Azerbaijan
  • J. I. Guseinov Azerbaijan State Pedagogical University
  • I. I. Abbasov Azerbaijan State University of Oil and Industry
  • F. I. Mamedov Academy of the Ministry of Emergency Situations of the Republic of Azerbaijan
  • D. J. Askerov Azerbaijan State University of Oil and Industry

DOI:

https://doi.org/10.15407/ujpe63.12.1109

Keywords:

quantum-confined thin film, quantum confinement effects, dielectric function, modified P¨oschel–Teller potential, matrix element of the scattering potential, polarization operator

Abstract

The spatial and time dispersions of the dielectric permittivity of an electron gas in quasi-two-dimensional quantum nanostructures are studied. The screening of the charge-carrier scattering potential in a quantum-confined film with a modified P¨oschel–Teller potential is considered for the first time. Analytical expressions for the dielectric permittivity are obtained.

References

Y. He, Y. Zhao, J. Quan, G. Ouyang. Shape engineering for electronic and optoelectronic properties of Si nanostructure solar cells. J. Appl. Phys. 120, 144302 (2016). https://doi.org/10.1063/1.4964802

J. Tao, Y. Jiao, Y. Mo, Z-H. Yang, J-X. Zhu, P. Hyldgaard, J.P. Perdew. First-principles study of the binding energy between nanostructures and its scaling with system size. Phys. Rev. B 97, 155143 (2018). https://doi.org/10.1103/PhysRevB.97.155143

K.A. Gonchar, L.A. Osminkina, V. Sivakov, V. Lysenko, V.Yu. Timoshenko. Optical properties of nanowire structures produced by the metal-assisted chemical etching of lightly doped silicon crystal wafers. Fiz. Tekh. Poluprovodn. 48, 1654 (2014) (in Russian). https://doi.org/10.1134/S1063782614120082

F. Zheng, J. Tao, A.M. Rappe. Frequency-dependent dielectric function of semiconductors with application to physisorption. Phys. Rev. B 95, 035203 (2017). https://doi.org/10.1103/PhysRevB.95.035203

L.E. Golub, F.V. Porubaev. Effects of spatial dispersion at intraband transitions in multiple quantum wells structures. Fiz. Tverd. Tela 55, 2128 (2013) (in Russian). https://doi.org/10.1134/S1063783413110103

M.L. Trolle, T.G. Pedersen, V. V’eniard. Model dielectric function for 2D semiconductors including substrate screening. Sci. Rep. 7, 39844 (2017). https://doi.org/10.1038/srep39844

Z. Hens, D. Vanmaekelbergh, E.S. Kooij, H.Wormeester, G. Allan, C. Delerue. Effect of quantum confinement on the dielectric function of PbSe. Phys. Rev. Lett. 92, 026808 (2004). https://doi.org/10.1103/PhysRevLett.92.026808

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, Z. Hens1. Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers–Kr¨onig analysis of the absorbance spectrum. Phys. Rev. B 81, 235319 (2010). https://doi.org/10.1103/PhysRevB.81.235319

N.L. Bazhenov, K.D. Mynbaev, G.G. Zegrya. A dielectric function in semiconductor quasi-2D nanostructures. Fiz. Tekh. Poluprovodn. 41, 190 (2007) (in Russian). https://doi.org/10.1134/S1063782607020145

A. Wierling, H. Reinholz, G. R¨opke, J. Adams. Dynamic structure factor of dusty and low-dimensional plasmas. Contrib. Plasma Phys. 45, 441 (2005). https://doi.org/10.1002/ctpp.200510050

S.S. Sokolov, N. Studart. Plasmon spectrum in low-dimensional electron systems over insulating cryogenic films: Screening, quantum degeneracy, and multisubband effects. Phys. Rev. B 68,195403 (2003). https://doi.org/10.1103/PhysRevB.68.195403

M. Vallone. Practical formulations of the electron capture rate in quantum wells by phonon emission at low carrier density. J. Appl. Phys. 911, 9848 (2002). https://doi.org/10.1063/1.1477615

V.F. Gantmakher, Y.B. Levinson. Carrier Scattering in Metals and Semiconductors (North-Holland, 1987).

B.M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific, 1994). https://doi.org/10.1142/1926

T. Ando, A. Fowler, F. Stern. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982). https://doi.org/10.1103/RevModPhys.54.437

P.P. Kostrobii, I.A. Ryzha. A Model for Thin Electron Film. Visn. Nat. Univ. L'vivs'ka Politekhn. Fiz. Mat. Nauk. No. 718, 89 (2011) (in Ukrainian).

S. Fl¨ugge. Practical Quantum Mechanics (Springer, 1974).

S. Cruz y Cruz, ¸S. Kuru, J. Negro. Classical motion and coherent states for P¨oschel–Teller potentials. Phys. Lett. A 372, 1391 (2008). https://doi.org/10.1016/j.physleta.2007.10.010

Handbook of Mathematical Functions. Edited by M. Abramovitz, I.A. Stegun (Dover, 1970).

Downloads

Published

2018-12-09

How to Cite

Gasanov, K. A., Guseinov, J. I., Abbasov, I. I., Mamedov, F. I., & Askerov, D. J. (2018). Dielectric Function of a Quantum-Confined Thin Film with a Modified Pöschel–Teller Potential. Ukrainian Journal of Physics, 63(12), 1109. https://doi.org/10.15407/ujpe63.12.1109

Issue

Section

Semiconductors and dielectrics