Interaction Of A Terahertz Electromagnetic Wave with the Plasmonic System “Grating– 2D-Gas”. Analysis of Features of the Near Field

Authors

  • Yu. M. Lyaschuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Korotyeyev V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.05.0495

Keywords:

grating, near field, near-field zone, plasmonic system/structure, transmission, reflection, and loss coefficients, strip, circularly/elliptically polarized

Abstract

The theory of interaction between electromagnetic waves and a plasmonic structure consisting of the subwavelength metal grating locating over the layer of a two-dimensional (2D) electron gas has been developed. The frequency dependences of the transmission, reflection, and loss coefficients are shown to have a resonant behavior relating to the excitation of plasmons in the 2D gas. The influence of the geometrical and electrical parameters of the system on the plasmon resonance characteristics is studied, and the structure of an electromagnetic field in the near-field zone is analyzed. The spatial distributions of the electric field components, the electric power density, and the electromagnetic wave polarization are found. The plasmon resonance is shown to substantially increase the local concentration of the electric field in the near-field zone of the grating.

References

M. Tonouchi, Nature Photon. 1, 97 (2007).

https://doi.org/10.1038/nphoton.2007.3

A.V. Chaplik, Surf. Sci. Rep. 5, 289 (1985).

https://doi.org/10.1016/0167-5729(85)90010-X

M.I. Dyakonov, CR Acad. Sci. B Phys. 11, 413 (2010).

T. Otsuji et al., J. Phys.: Condens. Matter 20, 384206 (2008).

https://doi.org/10.1088/0953-8984/20/38/384206

V.V. Popov, J. Infrared Milli. Terahz Wav. 32, 1178 (2011).

W. Knap, M. Dyakonov, D. Coquillat et al., J. Infrared Milli. Terahz Wav. 30, 1319 (2009).

D. Veksler, F. Teppe, A.P. Dmitriev, V.Yu. Kachorovskii, W. Knap, and M.S. Shur, Phys. Rev. B 73, 125328 (2006).

https://doi.org/10.1103/PhysRevB.73.125328

M. Sakowicz, M.B. Lifshits, O.A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).

https://doi.org/10.1063/1.3632058

T. Watanabe, S.B. Tombet, Y. Tanimoto et al., Solid State Electron. 78, 109 (2012).

https://doi.org/10.1016/j.sse.2012.05.047

A.R. Davoyan, V.V. Popov, and S.A. Nikitov, Phys. Rev. Lett. 108, 127401 (2012).

https://doi.org/10.1103/PhysRevLett.108.127401

S.A. Mikhailov, Recent Res. Devel. Appl. Phys. 2, 65 (1999).

S.A. Mikhailov, Phys. Rev. B 58, 1517 (1998).

https://doi.org/10.1103/PhysRevB.58.1517

V.V. Popov, D.V. Fateev, T. Otsuji, Y.M. Meziani, D. Coquillat, and W. Knap, Appl. Phys. Lett. 99, 3504 (2011).

https://doi.org/10.1063/1.3670321

G.R. Aizin, V.V. Popov, and O.V. Polischuk, Appl. Phys. Lett. 89, 143512 (2006).

https://doi.org/10.1063/1.2358836

Yu.M. Lyaschuk and V.V. Korotyeyev, Ukr. J. Phys. Opt. 13, 142 (2012).

https://doi.org/10.3116/16091833/13/3/142/2012

A. Trugler and U. Hohenester, arXiv: 0802.1630 (2008)

J.R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, Analyst 133, 1308 (2008).

https://doi.org/10.1039/b802918k

G. Baffou, C. Girard, E. Dujardin, G.C. des Francs, and O.J.F. Martin, Phys. Rev. B 77, 121101 (2008).

https://doi.org/10.1103/PhysRevB.77.121101

V.A. Kochelap and S.M. Kukhtaruk, J. Appl. Phys. 109, 114318 (2011);

https://doi.org/10.1063/1.3594682

Ukr. J. Phys. 57, 367 (2012).

R. Petit, Nouv. Rev. Opt. 6, 129 (1975).

https://doi.org/10.1088/0335-7368/6/3/301

M. Born and E.W. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, Cambridge, 1999).

https://doi.org/10.1017/CBO9781139644181

T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Appl. Phys. Lett. 99, 082101 (2011).

https://doi.org/10.1063/1.3627183

G.I. Syngayivska and V.V. Korotyeyev, Ukr. J. Phys. 58, 40 (2013).

https://doi.org/10.15407/ujpe58.01.0040

G.I. Syngayivska, V.V. Korotyeyev, and V.A. Kochelap, Semicond. Sci. Technol. 28 035007 (2013).

https://doi.org/10.1088/0268-1242/28/3/035007

V.V. Korotyeyev, Semicond. Phys. Quant. Electr. Optoelectr. 16, 18 (2013).

https://doi.org/10.15407/spqeo16.01.018

V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Appl. Phys. Lett. 84, 3630 (2004).

https://doi.org/10.1063/1.1738518

V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, K.W. Kim, and D.L. Woolard, J. Appl. Phys. 96, 6488 (2004).

https://doi.org/10.1063/1.1811388

J. Lloyd-Hughes and T.-I. Jeon, J. Infrared Milli. Terahz Wav. 33, 871 (2012).

Quantum Coherence and Information Processing, edited by D. Esteve, J.M. Raimond, and J. Dalibard (Elsevier, London, 2004).

Published

2018-10-23

How to Cite

Lyaschuk, Y. M., & Korotyeyev, V. V. (2018). Interaction Of A Terahertz Electromagnetic Wave with the Plasmonic System “Grating– 2D-Gas”. Analysis of Features of the Near Field. Ukrainian Journal of Physics, 59(5), 495. https://doi.org/10.15407/ujpe59.05.0495

Issue

Section

Solid matter