Anisotropy and Pressure Effect on the Elastic and Mechanical Properties of (B3) BN

Authors

  • S. Daoud Faculte des Sciences et de la Technologie, Universite de Bordj Bou Arreridj
  • N. Bioud Laboratoire d’Optoelectronique & Composants, Universite Ferhat Abbes-Setif

DOI:

https://doi.org/10.15407/ujpe59.04.0418

Keywords:

(B3) BN compound, elastic and mechanical properties, pressure and anisotropy effect, stability criteria

Abstract

We present the results of ab initio calculations of the anisotropy and hydrostatic pressure effects on the elastic and mechanical properties of (B3) boron nitride, using the density functional perturbation theory (DFPT). The independent elastic and compliance constants, bulk and shear moduli, Zener anisotropy and Kleinman parameters, Cauchy and Born coefficients, Young modulus, and Poisson’s ratio for directions within the important crystallographic planes of this compound under pressure are obtained. The crystal density, the longitudinal, transverse, and average sound velocities, and the Debye temperature under pressure are also studied. In the investigation of the stability criteria, the results showed a phase transition pressure from zinc blende to the rock-salt phase at about 4.54 Mbar, which is in good agreement with some available theoretical data reported in the literature and shows discrepancies with another ones.

References

M.J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2003).

W.J. Tropf, M.F. Thomas, and T.J. Harris, Properties of Crystals and Glasses, Handbook of Optics (McGraw-Hill, New York, 2004), Vol. IV.

R.H. Wentorf, J. Chem. Phys. 26, 956 (1957).

https://doi.org/10.1063/1.1745964

Z.Y. Mijbil, J. of Bababylon Univ. 18, 1686 (2010).

F. El Haj Hassan, H. Akbarzadeh, and M. Zoaeter, J. Phys. Condens.-Mat. 16, 293 (2004).

N.E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).

https://doi.org/10.1103/PhysRevB.50.4397

S. Cui, W. Feng, H. Hu, and Z. Feng, Central Eur. J. Phys. 8, 628 (2009).

A. Zaoui and F. El Haj Hassan, J. Phys. Condens.-Mat. 13, 253 (2001).

S. Saib and N. Bouarissa, J. Alloy. Compd. 448, 11 (2008).

https://doi.org/10.1016/j.jallcom.2006.10.023

I. Gorczyca and N.E. Christensen, Physica B 185, 410 (1993).

https://doi.org/10.1016/0921-4526(93)90270-G

Haneen Yousef Saeed Shalash, Thesis of Master of Science, An-Najah-National University (Palestine, 2009).

F. EL Haj Hassan, These de Doctorat, Universite de Metz (France, 2000).

R.M. Wentzcovitch, M.L. Cohen, and P.K. Lam, Phys. Rev. B 36, 6058 (1987).

https://doi.org/10.1103/PhysRevB.36.6058

W. Sekkal, B. Bouhafs, H. Aourag, and M. Certier, J. Phys: Condens. Matter 10, 4975 (1998).

https://doi.org/10.1088/0953-8984/10/23/006

Z.Y. Mijbil, Chem. Mater. Res. 2(4), 30 (2012).

N. de Koker, J. Phys: Condens. Matter 24, 055401 (2012).

https://doi.org/10.1088/0953-8984/24/5/055401

S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. 58, 1861 (1987).

P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

https://doi.org/10.1103/PhysRevB.43.7231

X. Gonze, J.M. Beuken, R. Caracas et al., Comp. Mat. Sci. 25, 478 (2002).

https://doi.org/10.1016/S0927-0256(02)00325-7

X. Gonze, G.M. Rignanese, M. Verstraete et al., Zeit. Kristallogr. 220, 558 (2005).

S. Goedecker, SIAM J. Sci. Comput. 18, 1605 (1997).

https://doi.org/10.1137/S1064827595281940

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

https://doi.org/10.1103/PhysRevB.43.1993

H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5189 (1976).

https://doi.org/10.1103/PhysRevB.13.5188

S. Adachi, Physical Properties of III-V Semiconductor Compounds (Wiley, New York, 1992).

https://doi.org/10.1002/352760281X

O.H. Nielsen and R.M. Martin, Phys. Rev. B 32, 3792 (1985).

https://doi.org/10.1103/PhysRevB.32.3792

D.R. Hamman, X. Wu, K.M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005).

https://doi.org/10.1103/PhysRevB.71.035117

A. Benamrani, K. Kassali, and Kh. Bouamama, High Pressure Res. 30 (1), 207 (2010).

https://doi.org/10.1080/08957950903461301

S. Singh and M. Sarwan, J. Optoelectron. Adv. M. 12 (10), 2106 (2010).

J. W ang and S.Yip, Phys. Rev. Lett. 71, 4182 (1993).

K. Bouamama, N. Lebgaa, and K. Kassali, High Pressure Res. 25, 217 (2005).

https://doi.org/10.1080/08957950500259041

S. Daoud, K. Loucif, N. Bioud, N. Lebgaa, and L. Belagraa, Pramana J. Phys. 79, 95 (2012).

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).

E. Wigner, Trans. Faraday Soc. 34, 678 (1938).

https://doi.org/10.1039/tf9383400678

G.J. Ackland, Rep. Progr. Phys. 64, 483 (2001);

https://doi.org/10.1088/0034-4885/64/4/202

G.J. Ackland, High Pressure Phases of Group IV and III-V Semiconductors (Univ. of Edinburgh, Edinburgh, 1992).

H. Zhao, A. Chang, and Y. Wang, Physica B 404, 2192 (2009).

https://doi.org/10.1016/j.physb.2009.04.011

L. Bing, L.R. Feng, Y. Yong, and Y.X. Dong, Chin. Phys. B 19, 076201 (2010).

https://doi.org/10.1088/1674-1056/19/7/076201

Z. Charifi, H. Baaziz, Y. Saeed, Ali Hussain Reshak, and F. Soltani, Phys. Status Solidi B 249, 18 (2012).

https://doi.org/10.1002/pssb.201147216

R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, USA, 2005).

W.A. Brantley, J. Appl. Phys. 44, 534 (1973).

https://doi.org/10.1063/1.1661935

M.A. Hopcroft, W.D. Nix, and T.W. Kenny, J. Microelectromech. S 19, 229 (2010).

J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, Oxford, 1985).

H. Siethoff and K. Ahlborn, Phys. Status Solidi B 190, 179 (1995).

https://doi.org/10.1002/pssb.2221900126

Downloads

Published

2018-10-22

How to Cite

Daoud, S., & Bioud, N. (2018). Anisotropy and Pressure Effect on the Elastic and Mechanical Properties of (B3) BN. Ukrainian Journal of Physics, 59(4), 418. https://doi.org/10.15407/ujpe59.04.0418

Issue

Section

Solid matter

Most read articles by the same author(s)