New Fluorene-Based Fluorescent Probe with Efficient Two-Photon Absorption

Authors

  • M. V. Bondar Institute of Physics
  • O. V. Przhonska Institute of Physics
  • O. D. Kachkovsky Insitute of Organic Chemistry
  • A. Frazer Department of Chemistry, University of Central Florida
  • A. R. Morales Department of Chemistry, University of Central Florida
  • K. D. Belfield Department of Chemistry, University of Central Florida

DOI:

https://doi.org/10.15407/ujpe58.08.0748

Keywords:

two-photon absorption, fluorene, Z-scan method

Abstract

The synthesis, linear photophysical characterization, and two-photon absorption (2PA) properties of new fluorene derivative 3,30-(pyridine-2,6-diyl)bis(1-(7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)propane-1,3-dione) (1) have been presented. The steady-state absorption, fluorescence and excitation anisotropy spectra along with the fluorescence decay kinetics of 1 are obtained in the solvents of different polarities at room temperature with respect to its potential application in bioimaging. The analysis of linear photophysical properties revealed a complicated nature of the main one-photon absorption band of 1, and the strong solvatochromic effect in steady-state fluorescence spectra is observed. The degenerate 2PA spectrum of 1 is measured in the spectral range 570–970 nm with the use of the open aperture Z-scan method under the 1-kHz femtosecond excitation, and the maximum values of two-photon action cross sections ~(100–130) GM are obtained. The nature of the linear absorption and the 2PA bands is analyzed by quantum chemical methods using a Gaussian program package.

References

<ol>

<li> Z.S. An, S.A. Odom, R.F. Kelley, C. Huang, X. Zhang, S. Barlow, L.A. Padilha, J. Fu, S. Webster, D.J. Hagan, E.W. Van Stryland, S.M.R. Wasielewski, and S.R. Marder, J. Phys. Chem. A 113, 5585 (2009).
&nbsp;<a href="https://doi.org/10.1021/jp900152r">https://doi.org/10.1021/jp900152r</a>
</li>
<li> M. Rumi, S.J.K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S.R. Marder, and J.W. Perry, J. Phys. Chem. C 112, 8061 (2008).
&nbsp;<a href="https://doi.org/10.1021/jp710682z">https://doi.org/10.1021/jp710682z</a>
</li>
<li> S.A. Odom, S. Webster, L.A. Padilha, D. Peceli, H. Hu, G. Nootz, S.J. Chung, S. Ohira, J.D. Matichak, O.V. Przhonska, A.D. Kachkovski, S. Barlow, J.L. Bredas, H.L. Anderson, D.J. Hagan, E.W. Van Stryland, and S.R. Marder, J. Am. Chem. Soc. 131, 7510 (2009).
&nbsp;<a href="https://doi.org/10.1021/ja901244e">https://doi.org/10.1021/ja901244e</a>
</li>
<li> M. Balu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, S. Yao, K. Belfield, S.J. Zheng, S. Barlow, and S. Marder, J. Opt. Soc. Am. B 25, 159 (2008).
&nbsp;<a href="https://doi.org/10.1364/JOSAB.25.000159">https://doi.org/10.1364/JOSAB.25.000159</a>
</li>
<li> Q.D. Zheng, G.S. He, and P.N. Prasad, Chem. Phys. Lett. 475, 250 (2009).
&nbsp;<a href="https://doi.org/10.1016/j.cplett.2009.05.040">https://doi.org/10.1016/j.cplett.2009.05.040</a>
</li>
<li> K.D. Belfield and K.J. Schafer, Chem. Mater. 14, 3656 (2002).
&nbsp;<a href="https://doi.org/10.1021/cm010799t">https://doi.org/10.1021/cm010799t</a>
</li>
<li> C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, and M.V. Bondar, Chem. Mater. 19, 5165 (2007).
&nbsp;<a href="https://doi.org/10.1021/cm071336b">https://doi.org/10.1021/cm071336b</a>
</li>
<li> K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, J. Photoch. Photobio. A 162, 497 (2004).
&nbsp;<a href="https://doi.org/10.1016/S1010-6030(03)00394-0">https://doi.org/10.1016/S1010-6030(03)00394-0</a>
</li>
<li> K.D. Belfield, M.V. Bondar, F.E. Hernandez, and O.V. Przhonska, J. Phys. Chem. C 112, 5618 (2008).
&nbsp;<a href="https://doi.org/10.1021/jp711950z">https://doi.org/10.1021/jp711950z</a>
</li>
<li> P.L. Wu, X.J. Feng, H.L. Tam, M.S. Wong, and K.W. Cheah, J. Am. Chem. Soc. 131, 886 (2009).
&nbsp;<a href="https://doi.org/10.1021/ja806703v">https://doi.org/10.1021/ja806703v</a>
</li>
<li> M. Velusamy, J.-Y. Shen, J.T. Lin, Y.-C. Lin, C.-C. Hsieh, C.-H. Lai, C.-W. Lai, M.-L. Ho, Y.-C. Chen, P.-T. Chou and J.-K. Hsiao, Adv. Funct. Mater. 19, 2388 (2009).
&nbsp;<a href="https://doi.org/10.1002/adfm.200900125">https://doi.org/10.1002/adfm.200900125</a>
</li>
<li> S.J. Andrasik, K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska, and S. Yao, Chem. Phys. Chem. 8, 399 (2007).
&nbsp;<a href="https://doi.org/10.1002/cphc.200600568">https://doi.org/10.1002/cphc.200600568</a>
</li>
<li> A. Hayek, F. Bolze, J.F. Nicoud, P.L. Baldeck, and Y. Mely, Photochem. Photobio. Sci. 5, 102 (2006).
&nbsp;<a href="https://doi.org/10.1039/B509843B">https://doi.org/10.1039/B509843B</a>
</li>
<li> A.R. Morales, K.J. Schafer-Hales, A.I. Marcus, and K.D. Belfield, Bioconj. Chem. 19, 2559 (2008).
&nbsp;<a href="https://doi.org/10.1021/bc800415t">https://doi.org/10.1021/bc800415t</a>
</li>
<li> K.J. Schafer-Hales, K.D. Belfield, S. Yao, P.K. Frederiksen, J.M. Hales, and P.E. Kolattukudy, J. Biomed. Opt. 10, 051402/1 (2005).
</li>
<li> K. Konig, J. Microsc. 200, 83 (2000).
&nbsp;<a href="https://doi.org/10.1046/j.1365-2818.2000.00738.x">https://doi.org/10.1046/j.1365-2818.2000.00738.x</a>
</li>
<li> R.M. Williams, W.R. Zipfel, and W.W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
&nbsp;<a href="https://doi.org/10.1016/S1367-5931(00)00241-6">https://doi.org/10.1016/S1367-5931(00)00241-6</a>
</li>
<li> D.W. Piston, Trends Cell Biol. 9, 66 (1999).
&nbsp;<a href="https://doi.org/10.1016/S0962-8924(98)01432-9">https://doi.org/10.1016/S0962-8924(98)01432-9</a>
</li>
<li> T.R. Krishna, M. Parent, M.H. Werts, L. Moreaux, S. Gmouh, S. Charpak, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, Angew. Chem. Int. Ed. 45, 4645 (2006).
&nbsp;<a href="https://doi.org/10.1002/anie.200601246">https://doi.org/10.1002/anie.200601246</a>
</li>
<li> C. Xu and W.W. Webb, J. Opt. Soc. Am. B 13, 481(1996).
&nbsp;<a href="https://doi.org/10.1364/JOSAB.13.000481">https://doi.org/10.1364/JOSAB.13.000481</a>
</li>
<li> P. Kaatz and D.P. Shelton, J. Opt. Soc. Am. B 16, 998 (1999).
&nbsp;<a href="https://doi.org/10.1364/JOSAB.16.000998">https://doi.org/10.1364/JOSAB.16.000998</a>
</li>
<li> W.J. Yang, M.S. Seo, X.Q. Wang, S.J. Jeon, and B.R. Cho, J. Fluoresc. 18, 403 (2008).
&nbsp;<a href="https://doi.org/10.1007/s10895-007-0280-3">https://doi.org/10.1007/s10895-007-0280-3</a>
</li>
<li> K.D. Belfield, M.V. Bondar, O.V. Przhonska, K.J. Schafer, and W. Mourad, J. Lumin. 97, 141 (2002).
&nbsp;<a href="https://doi.org/10.1016/S0022-2313(02)00216-8">https://doi.org/10.1016/S0022-2313(02)00216-8</a>
</li>
<li> K.D. Belfield, M.V. Bondar, O.V. Przhonska, and K.J. Schafer, J. Fluoresc. 12, 449 (2002).
&nbsp;<a href="https://doi.org/10.1023/A:1021322228428">https://doi.org/10.1023/A:1021322228428</a>
</li>
<li> C.C. Corredor, K.D. Belfield, M.V. Bondar, O.V. Przhonska, and S. Yao, J. Photoch. Photobio. A 184, 105 (2006).
&nbsp;<a href="https://doi.org/10.1016/j.jphotochem.2006.03.036">https://doi.org/10.1016/j.jphotochem.2006.03.036</a>
</li>
<li> X. Wang, S. Yao, H.-Y. Ahn, Y. Zhang, M.V. Bondar, J.A. Torres, and K.D. Belfield, Biomed. Opt. Express 1, 453 (2010).
&nbsp;<a href="https://doi.org/10.1364/BOE.1.000453">https://doi.org/10.1364/BOE.1.000453</a>
</li>
<li> X. Wang, D.M. Nguyen, C.O. Yanez, L. Rodriguez, H.-Y. Ahn, M.V. Bondar, and K.D. Belfield, J. Am. Chem. Soc. 132, 12237 (2010).
&nbsp;<a href="https://doi.org/10.1021/ja1057423">https://doi.org/10.1021/ja1057423</a>
</li>
<li> C.D. Andrade, C.O. Yanez, M.A. Qaddoura, X. Wang, C.L. Arnett, S.A. Coombs, R. Bassiouni, M.V. Bondar, and K.D. Belfield, J. Fluoresc. 21, 1223 (2011).
&nbsp;<a href="https://doi.org/10.1007/s10895-010-0801-3">https://doi.org/10.1007/s10895-010-0801-3</a>
</li>
<li> K.D. Belfield, A.R. Morales, B.S. Kang, J.M. Hales, D.J. Hagan, E.W. Van Stryland, V.M. Chapela, and J. Percino, Chem. Mater. 16, 4634 (2004).
&nbsp;<a href="https://doi.org/10.1021/cm049872g">https://doi.org/10.1021/cm049872g</a>
</li>
<li> K.D. Belfield, A.R. Morales, J.M. Hales, D.J. Hagan, E.W. Van Stryland, V.M. Chapela, and J. Percino, Chem. Mater. 16, 2267 (2004).
&nbsp;<a href="https://doi.org/10.1021/cm035253g">https://doi.org/10.1021/cm035253g</a>
</li>
<li> J.P. Moreno and M.G. Kuzyk, J. Chem. Phys. 123, 194101/1 (2005).
</li>
<li> M.G. Kuzyk, J. Chem. Phys. 125, 154108/1 (2006).
</li>
<li> O.S. Finikova, T. Troxler, A. Senes, W.F. DeGrado, R.M. Hochstrasser, and S.A. Vinogradov, J. Phys. Chem. A 111, 6977 (2007).
&nbsp;<a href="https://doi.org/10.1021/jp071586f">https://doi.org/10.1021/jp071586f</a>
</li>
<li> P.A. Padmawar, J.E. Rogers, G.S. He, L.Y. Chiang, L.S. Tan, T. Canteenwala, Q.D. Zheng, J.E. Slagle, D.G. McLean, P.A. Fleitz, and P.N. Prasad, Chem. Mater. 18, 4065 (2006).
&nbsp;<a href="https://doi.org/10.1021/cm060718z">https://doi.org/10.1021/cm060718z</a>
</li>
<li> M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Elect. 26, 760 (1990).
&nbsp;<a href="https://doi.org/10.1109/3.53394">https://doi.org/10.1109/3.53394</a>
</li>
<li> M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ц. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian (Wallingford, CT, 2009).
</li>
<li> A. Picot, C. Feuvrie, C. Barsu, F. Malvolti, B. Le Guennic, H. Le Bozec, C. Andraud, L. Toupet, and O. Maury, Tetrahedron 64, 399 (2008).
&nbsp;<a href="https://doi.org/10.1016/j.tet.2007.10.064">https://doi.org/10.1016/j.tet.2007.10.064</a>
</li>
<li> J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
&nbsp;<a href="https://doi.org/10.1007/978-0-387-46312-4">https://doi.org/10.1007/978-0-387-46312-4</a>
</li>
<li> G. Luchita, M.V. Bondar, S. Yao, I.A. Mikhailov, C.O. Yanez, O.V. Przhonska, A.E. Masunov, and K.D. Belfield, Appl. Mater. Interf. 3, 3559 (2011).
&nbsp;<a href="https://doi.org/10.1021/am200783c">https://doi.org/10.1021/am200783c</a>
</li>
<li> L.A. Padilha, S. Webster, O.V. Przhonska, H.H. Hu, D. Peceli, J.L. Rosch, M.V. Bondar, A.O. Gerasov, Y.P. Kovtun, M.P. Shandura, A.D. Kachkovski, D.J. Hagan, and E.W. Van Stryland, J. Mater. Chem. 19, 7503 (2009).
&nbsp;<a href="https://doi.org/10.1039/b907344b">https://doi.org/10.1039/b907344b</a>
</li>
<li> J. Fu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, O.V. Przhonska, M.V. Bondar, Y.L. Slominsky, and A.D. Kachkovski, J. Opt. Soc. Am. B 24, 67 (2007).
&nbsp;<a href="https://doi.org/10.1364/JOSAB.24.000067">https://doi.org/10.1364/JOSAB.24.000067</a>
</li>
<li> B.J. Orr and J.F. Ward, Mol. Phys. 20, 513 (1971).
&nbsp;<a href="https://doi.org/10.1080/00268977100100481">https://doi.org/10.1080/00268977100100481</a>
</li>
<li> K. Ohta, L. Antonov, S. Yamada, and K. Kamada, J. Chem. Phys. 127, (2007).
</li>
<li> A.S. Tatikolov, Z.A. Krasnaya, L.A. Shvedova, and V.A. Kuzmin, Int. J. Photoenergy 2, 23 (2000).
&nbsp;<a href="https://doi.org/10.1155/S1110662X00000040">https://doi.org/10.1155/S1110662X00000040</a>
</li>
<li> J.B. Birks and D.J. Dyson, Proc. R. Soc. Lond. A 275, 135 (1963).
&nbsp;<a href="https://doi.org/10.1098/rspa.1963.0159">https://doi.org/10.1098/rspa.1963.0159</a>
</li>
<li> K.D. Belfield, M.V. Bondar, J.M. Hales, A.R. Morales, O.V. Przhonska, and K.J. Schafer, J. Fluoresc. 15, 3 (2005).
&nbsp;<a href="https://doi.org/10.1007/s10895-005-0207-9">https://doi.org/10.1007/s10895-005-0207-9</a>
</li>
<li> K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska, and K.J. Schafer, Appl. Optics 43, 6339 (2004).
&nbsp;<a href="https://doi.org/10.1364/AO.43.006339">https://doi.org/10.1364/AO.43.006339</a>
</li>
<li> K.D. Belfield, M.V. Bondar, F.E. Hernandezt, O.V. Przhonska, and S. Yao, J. Phys. Chem. B 111, 12723 (2007).
&nbsp;<a href="https://doi.org/10.1021/jp074456f">https://doi.org/10.1021/jp074456f</a>
</li>
<li> K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, Chem. Phys. Lett. 372, 386 (2003).
&nbsp;<a href="https://doi.org/10.1016/S0009-2614(03)00413-5">https://doi.org/10.1016/S0009-2614(03)00413-5</a>
</li>
<li> O.K. Nag, C.S. Lim, B.L. Nguyen, B. Kim, J. Jang, J.H. Han, B.R. Cho, and H.Y. Woo, J. Mater. Chem. 22, 1977 (2012).
&nbsp;<a href="https://doi.org/10.1039/C1JM14693A">https://doi.org/10.1039/C1JM14693A</a>
</li>
<li> V.L. Anderson and W.W. Webb, BMC Biotechnol. 11:125, 1 (2011).
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Bondar, M. V., Przhonska, O. V., Kachkovsky, O. D., Frazer, A., Morales, A. R., & Belfield, K. D. (2018). New Fluorene-Based Fluorescent Probe with Efficient Two-Photon Absorption. Ukrainian Journal of Physics, 58(8), 748. https://doi.org/10.15407/ujpe58.08.0748

Issue

Section

Solid matter

Most read articles by the same author(s)