Rotation of Plasma Layers with Various Densities in Crossed ExB Fields

Authors

  • Yu. V. Kovtun National Science Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine
  • E. I. Skibenko National Science Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine
  • A. I. Skibenko National Science Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine
  • V. B. Yuferov National Science Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.05.0450

Keywords:

plasma, fluctuation reflectometry, plasma layers

Abstract

The rotational velocity of plasma layers with various densities in a pulsed reflex-discharge plasma is studied with the use of the two-frequency microwave fluctuation reflectometry. The difference between the angular rotational velocities of plasma layers with different densities is revealed, and their time dependences are determined. The rotational velocity of plasma layers is found to increase with the magnetic field induction. On the basis of the experimental data obtained, the radial electric field strength in the plasma layers concerned is evaluated.

References

<ol>
<li> K. Boyer, J.E. Hammel, C.L. Longmire et al., in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (1958), Vol. 31, p. 319.</li>
<li> O.A. Anderson, W.R. Baker, A. Bratenahl et al., in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (1958), Vol. 32, p. 155.</li>
<li> B. Lehnert, Nucl. Fusion 11, 485 (1971).&nbsp;<a href="https://doi.org/10.1088/0029-5515/11/5/010">https://doi.org/10.1088/0029-5515/11/5/010</a></li>
<li> C.E.S. Phillips, Proc. R. Soc. London, Sect. A 64, 172 (1898).</li>
<li> A.W. Hull, Phys. Rev. 18, 31 (1921).&nbsp;<a href="https://doi.org/10.1103/PhysRev.18.31">https://doi.org/10.1103/PhysRev.18.31</a></li>
<li> F.M. Penning, Physica 4, 71 (1937).&nbsp;<a href="https://doi.org/10.1016/S0031-8914(37)80123-8">https://doi.org/10.1016/S0031-8914(37)80123-8</a></li>
<li> I.C. Teodorescu, R. Clary, R.F. Ellis et al., Phys. Plasmas 17, 052503 (2010).&nbsp;<a href="https://doi.org/10.1063/1.3383051">https://doi.org/10.1063/1.3383051</a></li>
<li> B.M. Annaratone, A. Escarguel, T. Lefevre et al., Phys. Plasmas 18, 032108 (2011).<a href="https://doi.org/10.1063/1.3566004">https://doi.org/10.1063/1.3566004</a></li>
<li> P.M. Valanjua, S.M. Mahajan, and H.J. Quevedo, Phys. Plasmas 13, 062105 (2006).&nbsp;<a href="https://doi.org/10.1063/1.2209967">https://doi.org/10.1063/1.2209967</a></li>
<li> E. Thomas, A. Eadon, and A. Edwynn, Phys. Plasmas 12, 042109 (2005).&nbsp;<a href="https://doi.org/10.1063/1.1878833">https://doi.org/10.1063/1.1878833</a></li>
<li> A.B. Mikhailovskii, Dzh.G. Lominadze, A.P. Churikov, and V.D. Pustovitov, Fiz. Plazmy 35, 307 (2009).</li>
<li> V.V. Dolgopolov, V.L. Sizonenko, and K.N. Stepanov, Ukr. Fiz. Zh. 18, 18 (1973).</li>
<li> V.M. Zhdanov, Transport Processes in Multicomponent Plasma (Taylor and Francis, New York, 2002).</li>
<li> L.I. Romanyuk and V.M. Slobodyan, Ukr. Fiz. Zh. 17, 2004 (1972).</li>
<li> N.P. Efremov and N.P. Poluektov, J. Phys. D 31, 988 (1998).&nbsp;<a href="https://doi.org/10.1088/0022-3727/31/8/010">https://doi.org/10.1088/0022-3727/31/8/010</a></li>
<li> E. Del Bosco, S.W. Simpsont, R.S. Dallaqua, A. Montes, J. Phys. D 24, 2008 (1991).&nbsp;<a href="https://doi.org/10.1088/0022-3727/24/11/015">https://doi.org/10.1088/0022-3727/24/11/015</a></li>
<li> Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko et al., Vopr. At. Nauki Tekhn. 68, 214 (2010).</li>
<li> Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko et al., Plasma Phys. Rep. 36, 1065 (2010).&nbsp;<a href="https://doi.org/10.1134/S1063780X10120068">https://doi.org/10.1134/S1063780X10120068</a></li>
<li> Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko et al., Ukr. Fiz. Zh. 55, 1269 (2010).</li>
<li> E.I. Skibenko, Yu.V. Kovtun, A.I. Skibenko et al., Techn. Phys. 56, 623 (2011).&nbsp;<a href="https://doi.org/10.1134/S1063784211050197">https://doi.org/10.1134/S1063784211050197</a></li>
<li> E.I. Skibenko, Yu.V. Kovtun, A.I. Skibenko, V.B. Yuferov, Patent Ukraine 38780, Publ. 12.01.2009, Bul. No. 1 (2009).</li>
<li> L.D. Landau and E.M. Lifshitz, Mechanics (Butterworth Heinemann, Oxford, 2001).</li>
<li> L.D. Landau and E.M. Lifshits, The Classical Theory of Fields (Pergamon Press, Oxford, 1983). H. Alfv’en and C.-G. F¨althammar, Cosmical Electrodynamics: Fundamental Principles (Clarendon Press, Oxford, 1963). E.Z. Gusakov and A.Yu. Popov, in Abstracts of the 31st European Physical Society Conference on Plasma Physics, London, 2004 (European Physical Society, 2004), Vol. 28G, p. 1.181.</li>
<li> H. Alfv’en and C.-G. F¨althammar, Cosmical Electrodynamics: Fundamental Principles (Clarendon Press, Oxford, 1963).</li>
<li> E.Z. Gusakov and A.Yu. Popov, in Abstracts of the 31st European Physical Society Conference on Plasma Physics, London, 2004 (European Physical Society, 2004), Vol. 28G, p. 1.181.</li>
<li> B. Lehnert, Nucl. Fusion 1, 125 (1961).&nbsp;<a href="https://doi.org/10.1088/0029-5515/1/2/006">https://doi.org/10.1088/0029-5515/1/2/006</a></li>
<li> H. Alfv’en and G. Arrhenius, Evolution of the Solar System (NASA, Washington, DC, 1976).</li>
<li> I. Axnas, Astrophys. Space Sci. 55, 139 (1978).&nbsp;<a href="https://doi.org/10.1007/BF00642585">https://doi.org/10.1007/BF00642585</a></li>
</ol>

Published

2018-10-06

How to Cite

Kovtun, Y. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2018). Rotation of Plasma Layers with Various Densities in Crossed ExB Fields. Ukrainian Journal of Physics, 58(5), 450. https://doi.org/10.15407/ujpe58.05.0450

Issue

Section

Plasmas and gases

Most read articles by the same author(s)