Electrical and High-frequency Properties of Compensated Gan Under Electron Streaming Conditions
DOI:
https://doi.org/10.15407/ujpe58.01.0040Keywords:
streaming, dynamic differential mobility, diffusion coefficient, Fr¨ohlich constant, distribution function, transit-time frequencyAbstract
Conditions required for the streaming effect and the optical-phonon transit-time resonance to take place in a compensated bulk GaN are analyzed in detail. Monte Carlo calculations of the high-frequency differential electron mobility are carried out. It is shown that the negative dynamic differential mobility can be realized in the terahertz frequency range, at low lattice temperatures of 30–77 K, and applied electric fields of 3–10 kV/cm. New manifestations of the streaming effect are revealed, namely, the anisotropy of the dynamic differential mobility and a specific behavior of the diffusion coefficient in the direction perpendicular to the applied electric field. The theory of terahertz radiation transmission through the structure with an epitaxial GaN layer is developed. Conditions for the amplification of electromagnetic waves in the frequency range of 0.5–2 THz are obtained. The polarization dependence of the radiation transmission coefficient through the structure in electric fields above 1 kV/cm is found.
References
<li> W. Shockley, Bell Syst. Tech. J. 30, 990 (1951). <a href="https://doi.org/10.1002/j.1538-7305.1951.tb03692.x">https://doi.org/10.1002/j.1538-7305.1951.tb03692.x</a></li>
<li> I.M. Dykman and P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors (Naukova Dumka, Kyiv, 1981) (in Russian).</li>
<li> D.K. Ferry, Semiconductors (Macmillan, New York, 1991), Ch. 10.</li>
<li> V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).</li>
<li> G.A. Baraff, Phys. Rev. 128, 2507 (1962); <a href="https://doi.org/10.1103/PhysRev.128.2507">https://doi.org/10.1103/PhysRev.128.2507</a>Phys. Rev. A 133, 26 (1964). <a href="https://doi.org/10.1103/PhysRev.133.A26">https://doi.org/10.1103/PhysRev.133.A26</a></li>
<li> E. Vasilyus and E. Levinson, Zh. Eksp. Teor. Fiz. 50, 1660 (1966); 52, 1013 (1967).</li>
<li> Z.S. Gribnikov and V.A. Kochelap, Zh. Eksp. Teor. Fiz. 58, 1046 (1970).</li>
<li> W. Cox, J. Phys. Condens.Matter 2, 4849 (1990). <a href="https://doi.org/10.1088/0953-8984/2/22/006">https://doi.org/10.1088/0953-8984/2/22/006</a></li>
<li> W. Fawcett, A.D. Boardman, and S. Swain, J. Chem. Solids 31, 1963 (1970). <a href="https://doi.org/10.1016/0022-3697(70)90001-6">https://doi.org/10.1016/0022-3697(70)90001-6</a></li>
<li> C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983). <a href="https://doi.org/10.1103/RevModPhys.55.645">https://doi.org/10.1103/RevModPhys.55.645</a></li>
<li> A. Matulionis, J. Pozela, and A. Reklaitis, Phys. Status Solidi A 31, 83 (1975). <a href="https://doi.org/10.1002/pssa.2210310109">https://doi.org/10.1002/pssa.2210310109</a></li>
<li> R.C. Curby and D.K. Ferry, Phys. Status Solidi A 20, 569 (1973). <a href="https://doi.org/10.1002/pssa.2210200218">https://doi.org/10.1002/pssa.2210200218</a></li>
<li> F.M. Peeters, W. Van Puymbroeck, and J.T. Devreese, Phys. Rev. B 31, 5322 (1985). <a href="https://doi.org/10.1103/PhysRevB.31.5322">https://doi.org/10.1103/PhysRevB.31.5322</a></li>
<li> T.W. Hickmott, P.M. Solomon, F.F. Fang, F. Stern, R. Fischer, and H. Morkos, Phys. Rev. Lett. 52, 2053 (1984). <a href="https://doi.org/10.1103/PhysRevLett.52.2053">https://doi.org/10.1103/PhysRevLett.52.2053</a></li>
<li> P-F Lu, D.C. Tsui, and H.M. Cox, Phys. Rev. B 35, 9659 (1987). <a href="https://doi.org/10.1103/PhysRevB.35.9659">https://doi.org/10.1103/PhysRevB.35.9659</a></li>
<li> C.B. Hanna, E.S. Hellman, and R.B. Laughlin, Phys. Rev B 34, 5475 (1986). <a href="https://doi.org/10.1103/PhysRevB.34.5475">https://doi.org/10.1103/PhysRevB.34.5475</a></li>
<li> M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).</li>
<li> A.A. Andronov and V.A. Kozlov, Pis'ma Zh. Eksp. Teor. Fiz. 17, 124 (1973).</li>
<li> Ya.I. Alber, A.A. Andronov, V.A. Valov, V.A. Kozlov, A.M. Lerner, and I.P. Ryazantseva, Zh. ` Eksp. Teor. Fiz. 72, 1031 (1977).</li>
<li> L.E. Vorob'ev, S.N. Danilov, V.N. Tulupenko, and D.A. Firsov, JETP Lett. 73, 219 (2001). <a href="https://doi.org/10.1134/1.1371057">https://doi.org/10.1134/1.1371057</a></li>
<li> N. Ishida and T. Kurosawa, Jpn. J. Appl. Phys. 64, 2994 (1995). <a href="https://doi.org/10.1143/JPSJ.64.2994">https://doi.org/10.1143/JPSJ.64.2994</a></li>
<li> P.N. Shiktorov, Sov. Phys. – Collect. 25, 59 (1985).</li>
<li> V.A. Kozlov, A.V. Nikolaev, and A.V. Samokhvalov, Semicond. Sci. Technol. 19, s99 (2004); <a href="https://doi.org/10.1088/0268-1242/19/4/036">https://doi.org/10.1088/0268-1242/19/4/036</a>E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler, and L. Reggiani, J. Phys. Condens. Matter 20, 1 (2008). <a href="https://doi.org/10.1088/0953-8984/20/38/384209">https://doi.org/10.1088/0953-8984/20/38/384209</a></li>
<li> E.A. Barry, K.W. Kim, and V.A. Kochelap, Phys. Status Solidi B 228, 571 (2001); <a href="https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-I">https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-I</a>Appl. Phys. Lett. 80, 2317 (2002). <a href="https://doi.org/10.1063/1.1464666">https://doi.org/10.1063/1.1464666</a></li>
<li> V.M. Polyakov and F. Schwierz, J. Appl. Phys. 100, 103704 (2006). <a href="https://doi.org/10.1063/1.2365381">https://doi.org/10.1063/1.2365381</a></li>
<li> V.V. Korotyeyev, G.I. Syngayivska, V.A. Kochelap, and A.A. Klimov, Semicond. Phys. Quant. Electr. Optoelectr. 12, 328 (2009).</li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, J. Appl. Phys. 89, 1161 (2001). <a href="https://doi.org/10.1063/1.1334924">https://doi.org/10.1063/1.1334924</a></li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Regiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, IEEE Trans. Electron Devices 48, 438 (2001); <a href="https://doi.org/10.1109/16.906433">https://doi.org/10.1109/16.906433</a>Phys. Status Solidi A 198, 247 (2002).</li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J-F. Millithaler, and L. Regiani, J. Phys. Condens. Matter 20, 384209 (2008);
<a href="https://doi.org/10.1088/0953-8984/20/38/384209">https://doi.org/10.1088/0953-8984/20/38/384209</a>Phys. Rev. B 76, 045333 (2007). <a href="https://doi.org/10.1103/PhysRevB.76.045333">https://doi.org/10.1103/PhysRevB.76.045333</a></li>
<li> J.T. Lu and J.C. Cao, Semicond. Sci. Technol. 20, 829 (2005). <a href="https://doi.org/10.1088/0268-1242/20/8/034">https://doi.org/10.1088/0268-1242/20/8/034</a></li>
<li> V.V. Korotyeyev, V.A. Kochelap, K.W. Kim, and D.L. Woolard, Appl. Phys. Lett. 82, 2643 (2003).
<a href="https://doi.org/10.1063/1.1569039">https://doi.org/10.1063/1.1569039</a>
</li>
<li> K.W. Kim, V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, and D.L. Woolard, J. Appl. Phys. 96, 6488 (2004). <a href="https://doi.org/10.1063/1.1811388">https://doi.org/10.1063/1.1811388</a></li>
<li> J.T. Lu, J.C. Cao, and S.L. Feng, Phys. Rev. B 73, 195326 (2006). <a href="https://doi.org/10.1103/PhysRevB.73.195326">https://doi.org/10.1103/PhysRevB.73.195326</a></li>
<li> V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Appl. Phys. Lett. 84, 3630 (2002). <a href="https://doi.org/10.1063/1.1738518">https://doi.org/10.1063/1.1738518</a></li>
<li> V.V. Mitin, V.A. Kochelap, and M. Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics (Cambridge Univ. Press, New York, 1999).</li>
<li> V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) (in Russian).</li>
<li> M.S. Gupta, J. Appl. Phys. 49, 2837 (1978); <a href="https://doi.org/10.1063/1.325164">https://doi.org/10.1063/1.325164</a>R. Fauquembergue, J. Zimmermann, A. Kaszynski, and E. Constant, J. Appl. Phys. 51, 1065 (1980). <a href="https://doi.org/10.1063/1.327713">https://doi.org/10.1063/1.327713</a></li>
<li> M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975). <a href="https://doi.org/10.1063/1.88002">https://doi.org/10.1063/1.88002</a></li>
<li> D.C. Look and J.R. Sizelove, Appl. Phys. Lett. 79, 1133 (2001). <a href="https://doi.org/10.1063/1.1394954">https://doi.org/10.1063/1.1394954</a></li>
<li> L. Bouguen, S. Contreras, B. Jouault, L. Konczewicz, J. Camassel, Y. Cordier, M. Azize, S. Chenot, and N. Baron, Appl. Phys. Lett 92, 043504 (2008). <a href="https://doi.org/10.1063/1.2838301">https://doi.org/10.1063/1.2838301</a></li>
<li> V. Bareikis, A. Matulionis, J. Pozela, S. Asmontas, A. Reklaitis, A. Galdikas, R. Miliusyte, and E. Starikovas, Hot Electron Diffusion (Mokslas, Vilnius, 1981) (in Russian).</li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere. and C. Palermo, Semicond. Sci. Technol. 20, 279 (2005). <a href="https://doi.org/10.1088/0268-1242/20/3/004">https://doi.org/10.1088/0268-1242/20/3/004</a></li>
<li> D.J. Bartelink and G.Perski, Appl. Phys. Lett. 16, 191 (1970). <a href="https://doi.org/10.1063/1.1653157">https://doi.org/10.1063/1.1653157</a></li>
<li> J. Zimmermann, Y. Leroy, and E. Constant, J. Appl. Phys. 49, 3378 (1978). <a href="https://doi.org/10.1063/1.325293">https://doi.org/10.1063/1.325293</a></li>
<li> P.A. Lebwohl, J. Appl. Phys. 44, 1744 (1973). <a href="https://doi.org/10.1063/1.1662441">https://doi.org/10.1063/1.1662441</a></li>
<li> T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Appl. Phys. Lett. 99, 082101 (2011). <a href="https://doi.org/10.1063/1.3627183">https://doi.org/10.1063/1.3627183</a>
</ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.