Formation of Silver Nanoparticles in PVA-PEG Hydrogel under Electron Irradiation
DOI:
https://doi.org/10.15407/ujpe64.1.41Keywords:
silver nanoparticles, hydrogel, electron irradiation, antisepticAbstract
The formation of silver nanoparticles in a hydrogel on the basis of polyvinyl alcohol and polyethylene glycol at its crosslinking under the electron irradiation has been studied using the optical spectroscopy and scanning electron microscopy methods. The growth of nanoparticles 40–70 nm in size and their clustering into aggregates about a few hundred nanometers in diameter are demonstrated. The total concentration of nanoparticles and their size correlate with the concentration of ionic silver in the initial solution and the electron irradiation dose. The formation of nanoparticles is interpreted as a result of the radiation-induced chemical reduction of silver in the solution that is spatially confined in the cells of a 3D microstructure in the crosslinked hydrogel. The radiation-crosslinked hydrogel demonstrates an antiseptic effect for 7 of 8 tested microorganisms at silver concentrations of 0.001–0.003 wt.%, which is at least an order of magnitude lower than effective concentrations of ionic and colloidal silvers.
References
V.B. Neimash, G.D. Kupyanskyi, I.V. Olkhovyk, V.Yu. Povarchuk, I.S. Rogutskyi. Physical properties of radiation crosslinked polyvinyl alcohol–polyethylene glycol hydrogels from the viewpoint of their application as medical dressings. Ukr. Fiz. Zh. 62, 400 (2017) (in Ukrainian). https://doi.org/10.15407/ujpe62.05.0402
E. Cal?o, V.V. Khutoryanskiy. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polymer J. 65, 252 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024
S. Prabhu, E.K. Poulos. Silver nanoparticles: The mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int. Nano Lett. 2, 1 (2012). https://doi.org/10.1186/2228-5326-2-32
L. Braidich-Stolle, S. Hussain, J. Schlager. Cytotoxicity of nanoparticles of silver in mammalian cells. Toxicol. Sci. 2, 412 (2005). https://doi.org/10.1093/toxsci/kfi256
I. Soni, B. Salopek-Bondi. Silver nanoparticles on an antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interf. Sci. 27, 70 (2004).
K. Woraz. Antimicrobial property of silver. Toxicology 12, 89 (2001).
B. Boonkaew, P.M. Barber, S. Rengpipat, P. Supaphol, M. Kempf, J. He, V.T. John, L. Cuttle. Development and characterization of a novel, antimicrobial, sterile hydrogel for burn wounds: Single-step producton with gamma irradiation creates silver nanoparticls and radical polymerization. J. Pharmac. Sci. 103, 3244 (2014). https://doi.org/10.1002/jps.24095
M.L. Dmytruk, S.Z. Malynych, Surface plasmon resonances and their manifestation in optical properties of nanostructures of noble metals. Ukr. Fiz. Zh. Oglyady 9, 3 (2014) (in Ukrainian).
S.Z. Malynych, Estimation of the size and concentration of silver nanoparticles in aqueous suspensions from extinction spectra. J. Nano-Electron. Phys. 2, Nos. 4, 5 (2010).
A.D. McFarland, R.P. Van Duyne. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057 (2003). https://doi.org/10.1021/nl034372s
L.D. Kisterska, O.B. Loginova, V.V. Sadokhin, V.P. Sadokhin, Innovative technology for the production of biocompatible nano-disinfectants of new generation. Visn. Nats. Akad. Nauk Ukr. No. 1, 39 (2015) (in Ukrainian). https://doi.org/10.15407/visn2015.01.039
Shahid Ullah Khan, Tawfik A Saleh, Abdul Wahab, Muhammad Hafeez Ullah Khan, Dilfaraz Khan, Wasim Ullah Khan, Abdur Rahim, Sajid Kamal, Farman Ullah Khan, Shah Fahad. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomed. 13, 733 (2018).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.