Harmonic Oscillator Chain in Noncommutative Phase Space with Rotational Symmetry

Authors

  • Kh. P. Gnatenko Ivan Franko National University of Lviv, Department for Theoretical Physics, Laboratory for Statistical Physics of Complex Systems, Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.2.131

Keywords:

harmonic oscillator, composite system, tensors of noncommutativity

Abstract

We consider a quantum space with a rotationally invariant noncommutative algebra of coordinates and momenta. The algebra contains the constructed tensors of noncommutativity involving additional coordinates and momenta. In the rotationally invariant noncommutative phase space, the harmonic oscillator chain is studied. We obtain that the noncommutativity affects the frequencies of the system. In the case of a chain of particles with harmonic oscillator interaction, we conclude that, due to the noncommutativity of momenta, the spectrum of the center-of-mass of the system is discrete and corresponds to the spectrum of a harmonic oscillator.

References

N. Seiberg, E. Witten. String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999).

S. Doplicher, K. Fredenhagen, J.E. Roberts. Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39 (1994). https://doi.org/10.1016/0370-2693(94)90940-7

J.M. Romero, J.A. Santiago, J.D. Vergara. Note about the quantum of area in a noncommutative space. Phys. Rev. D 68, 067503 (2003). https://doi.org/10.1103/PhysRevD.68.067503

Kh. P. Gnatenko, V. M. Tkachuk. Lenght in a noncommutative phase space. Ukr. J. Phys. 63, 102 (2018). https://doi.org/10.15407/ujpe63.2.102

O. Bertolami, R. Queiroz. Phase-space noncommutativity and the Dirac equation. Phys. Lett. A 375, 4116 (2011). https://doi.org/10.1016/j.physleta.2011.09.053

M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716

A. P. Balachandran, P. Padmanabhan. Non-Pauli effects from noncommutative spacetimes. J. High Energy Phys. 1012, 001 (2010).

E. F. Moreno. Spherically symmetric monopoles in noncommutative space. Phys. Rev. D 72, 045001 (2005). https://doi.org/10.1103/PhysRevD.72.045001

V. G?alikov?a, P. Presnajder. Hydrogen atom in fuzzy spaces-exact solution. J. Phys: Conf. Ser. 343, 012096 (2012). https://doi.org/10.1088/1742-6596/343/1/012096

R. Amorim. Tensor operators in noncommutative quantum mechanics. Phys. Rev. Lett. 101, 081602 (2008). https://doi.org/10.1103/PhysRevLett.101.081602

Kh.P. Gnatenko, V.M. Tkachuk. Hydrogen atom in rotationally invariant noncommutative space. Phys. Lett. A 378, 3509 (2014). https://doi.org/10.1016/j.physleta.2014.10.021

M. Daszkiewicz, J. Lukierski, M. Woronowicz. Towards quantum noncommutative к-deformed field theory. Phys. Rev. D 77, 105007 (2008). https://doi.org/10.1103/PhysRevD.77.105007

M. Daszkiewicz, J. Lukierski, M. Woronowicz. к-deformed oscillators, the choice of star product and free к-deformed quantum fields. J. Phys. A: Math. Theor. 42, 355201 (2009). https://doi.org/10.1088/1751-8113/42/35/355201

A. Borowiec, Kumar S. Gupta, S. Meljanac, A. Pachol. Constraints on the quantum gravity scale from к-Minkowski spacetime. EPL 92, 20006 (2010). https://doi.org/10.1209/0295-5075/92/20006

A. Borowiec, J. Lukierski, A. Pachol. Twisting and к-Poincar?e. J. Phys. A: Math. Theor. 47 405203 (2014). https://doi.org/10.1088/1751-8113/47/40/405203

A. Borowiec, A. Pachol. к deformations and extended к-Minkowski spacetimes. SIGMA 10, 107 (2014).

M. Gomes, V.G. Kupriyanov. Position-dependent noncommutativity in quantum mechanics. Phys. Rev. D 79, 125011 (2009). https://doi.org/10.1103/PhysRevD.79.125011

V.G. Kupriyanov. A hydrogen atom on curved noncommutative space. J. Phys. A: Math. Theor. 46, 245303 (2013). https://doi.org/10.1088/1751-8113/46/24/245303

A.F. Ferrari, M. Gomes, V.G. Kupriyanov, C.A. Stechhahn. Dynamics of a Dirac fermion in the presence of spin noncommutativity. Phys. Lett. B 718, 1475 (2013). https://doi.org/10.1016/j.physletb.2012.12.010

Kh.P. Gnatenko, V.M. Tkachuk. Noncommutative phase space with rotational symmetry and hydrogen atom. Int. J. Mod. Phys. A 32, 1750161 (2017). https://doi.org/10.1142/S0217751X17501615

S. Ikeda, F. Fillaux. Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in the KHCO3 crystal. Phys. Rev. B 59, 4134 (1999). https://doi.org/10.1103/PhysRevB.59.4134

F. Fillaux. Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues. Chem. Phys. Lett. 408, 302 (2005). https://doi.org/10.1016/j.cplett.2005.04.069

Fan Hong-yi. Unitary transformation for four harmonically coupled identical oscillators. Phys. Rev. A 42, 4377 (1990). https://doi.org/10.1103/PhysRevA.42.4377

F. Michelot. Solution for an arbitrary number of coupled identical oscillators. Phys. Rev. A 45, 4271 (1992). https://doi.org/10.1103/PhysRevA.45.4271

C.M. Caves, B.L. Schumaker. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068 (1985). https://doi.org/10.1103/PhysRevA.31.3068

B.L. Schumaker, C.M. Caves. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys. Rev. A 31, 3093 (1985). https://doi.org/10.1103/PhysRevA.31.3093

M.B. Plenio, J. Hartley, J. Eisert. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6, 36 (2004). https://doi.org/10.1088/1367-2630/6/1/036

N. Isgur, G. Karl. P-wave baryons in the quark model. Phys. Rev. D 18, 4187 (1978). https://doi.org/10.1103/PhysRevD.18.4187

L. Ya. Glozman, D.O. Riska. The spectrum of the nucleons and the strange hyperons and chiral dynamics. Phys. Rept. 268, 263 (1996). https://doi.org/10.1016/0370-1573(95)00062-3

S. Capstick, W. Roberts. Quark models of baryon masses and decays. Prog. Part. Nucl. Phys. 45, 241 (2000). https://doi.org/10.1016/S0146-6410(00)00109-5

K. Audenaert, J. Eisert, M.B. Plenio, R.F. Werner. Entanglement properties of the harmonic chain. Phys. Rev. A 66, 042327 (2002). https://doi.org/10.1103/PhysRevA.66.042327

M.B Plenio, F.L Semiao. High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains. New J. Phys. 7, 73 (2005). https://doi.org/10.1088/1367-2630/7/1/073

A. Hatzinikitas, I. Smyrnakis. The noncommutative harmonic oscillator in more than one dimension. J. Math. Phys. 43, 113 (2002). https://doi.org/10.1063/1.1416196

A. Kijanka, P. Kosinski. Noncommutative isotropic harmonic oscillator. Phys. Rev. D 70, 127702 (2004). https://doi.org/10.1103/PhysRevD.70.127702

Jing Jian, Jian-Feng Chen. Non-commutative harmonic oscillator in magnetic field and continuous limit. Eur. Phys. J. C 60, 669 (2009). https://doi.org/10.1140/epjc/s10052-009-0950-1

A. Smailagic, E. Spallucci. Isotropic representation of the noncommutative 2D harmonic oscillator. Phys. Rev. D 65, 107701 (2002). https://doi.org/10.1103/PhysRevD.65.107701

A. Smailagic, E. Spallucci. Noncommutative 3D harmonic oscillator. J. Phys. A 35, 363 (2002). https://doi.org/10.1088/0305-4470/35/26/103

B. Muthukumar, P. Mitra. Noncommutative oscillators and the commutative limit. Phys. Rev. D 66, 027701 (2002). https://doi.org/10.1103/PhysRevD.66.027701

P.D. Alvarez, J. Gomis, K. Kamimura, M.S. Plyushchay. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton—Hooke symmetry. Phys. Lett. B 659, 906 (2008). https://doi.org/10.1016/j.physletb.2007.12.016

A.E.F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41, 837 (2004). https://doi.org/10.1088/0253-6102/41/6/837

I. Dadic, L. Jonke, S. Meljanac. Harmonic oscillator on noncommutative spaces. Acta Phys. Slov. 55, 149 (2005).

P.R. Giri, P. Roy. The non-commutative oscillator, symmetry and the Landau problem. Eur. Phys. J. C 57, 835 (2008). https://doi.org/10.1140/epjc/s10052-008-0705-4

J. Ben Geloun, S. Gangopadhyay, F.G. Scholtz. Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space. EPL 86, 51001 (2009). https://doi.org/10.1209/0295-5075/86/51001

E.M.C. Abreu, M.V. Marcial, A.C.R. Mendes, W. Oliveira. Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations. JHEP 2013, 138 (2013). https://doi.org/10.1007/JHEP11(2013)138

A. Saha, S. Gangopadhyay, S. Saha. Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves. Phys. Rev. D 83, 025004 (2011). https://doi.org/10.1103/PhysRevD.83.025004

D. Nath, P. Roy. Noncommutative anisotropic oscillator in a homogeneous magnetic field. Ann. Phys. 377, 115 (2017). https://doi.org/10.1016/j.aop.2016.12.028

Kh.P. Gnatenko, O.V. Shyiko. Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space. Mod. Phys. Lett. A 33, 1850091 (2018). https://doi.org/10.1142/S0217732318500918

M. Bawaj et al. Probing deformed commutators with macroscopic harmonic oscillators. Nature Commun. 6, 7503 (2015). https://doi.org/10.1038/ncomms8503

A. Jellal, El Hassan El Kinani, M. Schreiber. Two coupled harmonic oscillators on noncommutative plane. Int. J. Mod. Phys. A 20, 1515 (2005). https://doi.org/10.1142/S0217751X05020835

Bing-Sheng Lin, Si-Cong Jing, Tai-Hua Heng. Deformation quantization for coupled harmonic oscillators on a general noncommutative space. Mod. Phys. Lett. A 23, 445, (2008). https://doi.org/10.1142/S0217732308023992

Kh.P. Gnatenko, V.M. Tkachuk. Two-particle system with harmonic oscillator interaction in noncommutative phase space. J. Phys. Stud. 21, 3001 (2017).

Kh.P. Gnatenko. System of interacting harmonic oscillators in rotationally invariant noncommutative phase space. Phys. Lett. A 382, 3317 (2018). https://doi.org/10.1016/j.physleta.2018.09.039

M. Daszkiewicz, C.J. Walczyk. Classical mechanics of many particles defined on canonically deformed nonrelativistic spacetime. Mod. Phys. Lett A 26, 819 (2011). https://doi.org/10.1142/S0217732311035328

C. Bastos, A.E. Bernardini, J.F.G. Santos. Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors. Physica A 438, 340 (2015). https://doi.org/10.1016/j.physa.2015.07.009

Kh.P. Gnatenko, H.P. Laba, V.M. Tkachuk. Features of free particles system motion in noncommutative phase space and conservation of the total momentum. Mod. Phys. Lett. A 33, 1850131 (2018). https://doi.org/10.1142/S0217732318501316

Kh.P. Gnatenko, V.M. Tkachuk. Composite system in rotationally invariant noncommutative phase space. Int. J. Mod. Phys. A 33, 1850037 (2018). https://doi.org/10.1142/S0217751X18500379

Kh.P. Gnatenko. Rotationally invariant noncommutative phase space of canonical type with recovered weak equivalence principle. Europhys. Lett. 123, 50002 (2018). https://doi.org/10.1209/0295-5075/123/50002

Kh.P. Gnatenko. Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061 (2013). https://doi.org/10.1016/j.physleta.2013.09.036

Kh.P. Gnatenko, V.M. Tkachuk. Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity. Phys. Lett. A 381, 2463 (2017). https://doi.org/10.1016/j.physleta.2017.05.056

Kh.P. Gnatenko. Kinematic variables in noncommutative phase space and parameters of noncommutativity. Mod. Phys. Lett. A 32, 1750166 (2017). https://doi.org/10.1142/S0217732317501668

J. Florencio, jr., M. Howard Lee. Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A 31, 3231 (1985). https://doi.org/10.1103/PhysRevA.31.3231

Downloads

Published

2019-02-21

How to Cite

Gnatenko, K. P. (2019). Harmonic Oscillator Chain in Noncommutative Phase Space with Rotational Symmetry. Ukrainian Journal of Physics, 64(2), 131. https://doi.org/10.15407/ujpe64.2.131

Issue

Section

General physics