Correlation between Photoluminescent and Photoelectrical Properties of Mn-Doped ZnO

Authors

  • N. O. Korsunska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • I. V. Markevich V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • T. R. Stara V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • L. V. Borkovska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S. Lavoric V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • L. Yu. Melnichuk Mykola Gogol State University of Nizhyn
  • O. V. Melnichuk Mykola Gogol State University of Nizhyn

DOI:

https://doi.org/10.15407/ujpe63.7.660

Keywords:

zinc oxide, Mn2, photoluminescence, photoconductivity

Abstract

ZnO ceramics undoped and doped with manganese are investigated. The Mn content NMn is varied from 1019 to 1021 cm−3. The photoluminescence (PL), diffuse reflection, and photoconductivity (PC) spectra are measured. The quenching of the self-activated ZnO emission and the appearance of the light absorption and PC are observed in the same spectral region (400–600 nm) under the doping. Simultaneously, a week PL band peaked at 645 nm arose and was assigned to intra-shell transitions in Mn2+Zn centers. Based on the analysis of obtained results, the quenching effect is attributed to the re-absorption of the self-activated ZnO emission by Mn ions. A scheme of electron transitions that allows an explanation of the low intensity of the Mn-related emission is proposed.

References

<ol>
<li>T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).
<a href="https://doi.org/10.1126/science.287.5455.1019">https://doi.org/10.1126/science.287.5455.1019</a>
</li>
<li>D. Iuєan, B. Sanyal, O. Eriksson. Influence of defects on the magnetism of Mn-doped ZnO. J. Appl. Phys. 101 09H101 (1) (2007).
</li>
<li>M. Liu, A.h. Kitai, P. Mascher. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992).
<a href="https://doi.org/10.1016/0022-2313(92)90047-D">https://doi.org/10.1016/0022-2313(92)90047-D</a>
</li>
<li>X.T. Zhang, Y.C. Liu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, X.G. Kong. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Crystal Growth 254, 80 (2003).
<a href="https://doi.org/10.1016/S0022-0248(03)01143-6">https://doi.org/10.1016/S0022-0248(03)01143-6</a>
</li>
<li>U. Llyas, R.S. Rawat, Y. Wang, T.L. Tan, P. Lee, R. Chen, H.D. Sun, F. Li, S. Zhang. Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films. Appl. Surf. Sci. 258, 6373 (2012).
<a href="https://doi.org/10.1016/j.apsusc.2012.03.043">https://doi.org/10.1016/j.apsusc.2012.03.043</a>
</li>
<li>M. Sima, L. Mihut, E. Vasile, Ma. Sima, C. Logofatu. Optical properties of Mn-doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy. Thin Solid Films 590, 141 (2015).
<a href="https://doi.org/10.1016/j.tsf.2015.07.072">https://doi.org/10.1016/j.tsf.2015.07.072</a>
</li>
<li>M. Godlewski, A. Wojcik-Glodowska, E. Guziewicz, S. Yatsunenko, A. Zakrzewski, Y. Dumont, E. Chikoidze, M.R. Phillips. Optical properties of manganese doped wide band gap ZnS and ZnO. Optical Materials 31, 1751 (2009).
<a href="https://doi.org/10.1016/j.optmat.2008.12.031">https://doi.org/10.1016/j.optmat.2008.12.031</a>
</li>
<li>A.J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chacradhar. EPR and photoluminescence studies oh ZnO:Mn nanophosphors prepared by solution combustion route. Spectrochimica Acta (A) 79, 476 (2011).
<a href="https://doi.org/10.1016/j.saa.2011.03.014">https://doi.org/10.1016/j.saa.2011.03.014</a>
</li>
<li>Th.L. Plan. Structural, optical and magnetic properties of polycrystalline Zn1?xMnxO ceramics. Sol. St. Commun. 151, 24 (2011).
<a href="https://doi.org/10.1016/j.ssc.2010.10.031">https://doi.org/10.1016/j.ssc.2010.10.031</a>
</li>
<li> R. Beaulac, P.I. Archer, D.R. Gamelin. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals. J. Sol. St. Chemistry 181, 1582 (2008).
<a href="https://doi.org/10.1016/j.jssc.2008.05.001">https://doi.org/10.1016/j.jssc.2008.05.001</a>
</li>
<li> I. Markevich, T. Stara, L. Khomenkova, V. Kushnirenko, L. Borkovska. Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science 3, 486 (2016).
<a href="https://doi.org/10.3934/matersci.2016.2.508">https://doi.org/10.3934/matersci.2016.2.508</a>
</li>
<li> E. Chikoidze, Y. Dumont, F. Jomard, O. Gorochov. Electrical and optical properties of ZnO:Mn thin films grown by MOCVD. Thin Solid Films 515, 8519 (2007).
<a href="https://doi.org/10.1016/j.tsf.2007.03.133">https://doi.org/10.1016/j.tsf.2007.03.133</a>
</li>
<li> Q. Ma, X. Lv, Y. Wang, J. Chen. Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures. Opt. Mater. 60 86 (2016).
<a href="https://doi.org/10.1016/j.optmat.2016.07.014">https://doi.org/10.1016/j.optmat.2016.07.014</a>
</li>
<li> C.A. Johnson, K.R. Kittilstved, T.C. Kaspar, T.C. Droubay, S.A. Chambers, G.M. Salley, D.R. Gamelin. Mid-gap electronic states in Zn1?xMnxO. Phys. Rev. B 82, 115202 1 (2010).
</li>
<li> T.R. Stara, I.V. Markevich. Influence of Mn doping on ZnO defect-related emission. Semiconductor physics, quantum electronics and optoelectronics 20, 137 (2017).</li>

Published

2018-08-02

How to Cite

Korsunska, N. O., Markevich, I. V., Stara, T. R., Borkovska, L. V., Lavoric, S., Melnichuk, L. Y., & Melnichuk, O. V. (2018). Correlation between Photoluminescent and Photoelectrical Properties of Mn-Doped ZnO. Ukrainian Journal of Physics, 63(7), 660. https://doi.org/10.15407/ujpe63.7.660

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)