The Massless Limit of Bargmann–Wigner Equations for a Massive Graviton
DOI:
https://doi.org/10.15407/ujpe63.7.584Keywords:
Bargman–Wigner equation, massive graviton, wave equationsAbstract
Information about the discovery of gravity waves attract attention to the graviton’s mass problem. The massive graviton is a spin-2 particle with a non-zero mass. In this work, relativistic wave equations for a massive graviton have been studied in the limiting case of zero particle mass. The equations for the non-zero-mass graviton are based on the Bargman–Wigner equations in the five-dimensional space-time with the (++++−) signature. In the massless limit of massive graviton, all states with possible helicity values –0 (LL-graviton), ±1 (TL-graviton), and ±2 (TT-graviton) –are preserved.
References
<li>A.S. Goldhaber, M.M. Nieto. Photon and graviton mass limits. Rev. Mod. Phys. 82, 939 (2010).
<a href="https://doi.org/10.1103/RevModPhys.82.939">https://doi.org/10.1103/RevModPhys.82.939</a>
</li>
<li>C. de Rham, J.T. Deskins, A.J. Tolley, S.-Y. Zhou. Gravi- ton mass bounds. Rev. Mod. Phys. 89, 025004 (2017).
<a href="https://doi.org/10.1103/RevModPhys.89.025004">https://doi.org/10.1103/RevModPhys.89.025004</a>
</li>
<li>E.P.Wigner. Relativistic invariance and quantum phenomena. Rev. Mod. Phys. 29, 255 (1957).
<a href="https://doi.org/10.1103/RevModPhys.29.255">https://doi.org/10.1103/RevModPhys.29.255</a>
</li>
<li>L. Landau, R. Peierls. Quantum electrodynamics in the configuration space. Zs. Phys. 62, 188 (1930).
<a href="https://doi.org/10.1007/BF01339793">https://doi.org/10.1007/BF01339793</a>
</li>
<li>I. Bialynicki-Birula. Photon wave function. Progress in Optics 36, edited by E. Wolf (Elsevier, 1996), p. ????????? [arXiv: quant-ph/0508202].
</li>
<li>I. Bialynicki-Birula. Photon as a quantum particle. Acta Phys. Pol. B 37, 935 (2006).
</li>
<li>I. Bialynicki-Birula, Z. Bialynicka-Birula. The role of the Riemann–Silberstein vector in classical and quantum theories of electromagnetism. J. Phys. A 46, 053001 (2013).
<a href="https://doi.org/10.1088/1751-8113/46/5/053001">https://doi.org/10.1088/1751-8113/46/5/053001</a>
</li>
<li>Yu.P. Stepanovskyi. The little Lorentz group and wave equations of free massless fields with arbitrary spin. Ukr. J. Phys. 9, 1165 (1964).
</li>
<li>H.Weyl. Electron and gravitation. Z. Phys. 56, 330 (1929).
<a href="https://doi.org/10.1007/BF01339504">https://doi.org/10.1007/BF01339504</a>
</li>
<li> M.P. Bronstein. Quantization of gravitational waves. J. Exper. Theor. Phys. 6, 195 (1936).
</li>
<li> Yu.P. Stepanovsky. On wave equations of massless fields. Teor. Matem. Fiz. 47, 343 (1981).
<a href="https://doi.org/10.1007/BF01019301">https://doi.org/10.1007/BF01019301</a>
</li>
<li> Yu.P. Stepanovsky. From Maxwell equation to Berry's phase and sonoluminescence: Problems of theory of electromagnetic and other massless fields. Electromag. Phenom. 1, 180 (1998).
</li>
<li> Yu.P. Stepanovsky. On massless field and infinite component relativistic wave equations. Nucl. Phys. B. Proc. Suppl. 102 (1), 407 (2001).
<a href="https://doi.org/10.1016/S0920-5632(01)01587-0">https://doi.org/10.1016/S0920-5632(01)01587-0</a>
</li>
<li> Yu.P. Stepanovsky. Ettore Majorana and Matvei Bronstein (1906–1938): Men and scientists. In: Advances in the Interplay between Quantum and Gravity Physics (Kluwer Academic Publishers, 2002), p. 435 [ISBN: 978-94-010-0347-6].
<a href="https://doi.org/10.1007/978-94-010-0347-6_18">https://doi.org/10.1007/978-94-010-0347-6_18</a>
</li>
<li> Yu.P. Stepanovsky. ????? In: Problems in Contemporary Physics (KIPT, 2008), p. ?????????? (in Russian) [ISBN: 978-966-2136-15-9].
</li>
<li> B.L. Van der Waerden. Spinor analysis. Nachr. Ges. Wiss. G?ottingen, Math.-Phys. 100 (1929).
</li>
<li> O. Laporte, G.E. Uhlenbeck. Application of spinor analysis to the Maxwell and Dirac equations. Phys. Rev. 37, 1380 (1931).
<a href="https://doi.org/10.1103/PhysRev.37.1380">https://doi.org/10.1103/PhysRev.37.1380</a>
</li>
<li> V.I. Ogievetskii, I.V. Polubarinov. Notoph and its possible interactions. Yader. Fiz. 4, 216 (1966).
</li>
<li> Yu.B. Rumer. Spinor Analysis (Librocom, 2010) (in Russian) [ISBN: 978-5-397-01381-9].
</li>
<li> Yu. B. Rumer, A.I. Fet. Group Theory and Quantum Fields (Nauka, 1977) (in Russian).
</li>
<li> R. Penrose, W. Rindler. Spinors and Space-Time (Cambrige Univ. Press, 1984) [ISBN: 0521337070].
<a href="https://doi.org/10.1017/CBO9780511564048">https://doi.org/10.1017/CBO9780511564048</a>
</li>
<li> A. Proca. Wave theory of positive and negative electrons. J. Phys. Radium 7, 347 (1936).
<a href="https://doi.org/10.1051/jphysrad:0193600708034700">https://doi.org/10.1051/jphysrad:0193600708034700</a>
</li>
<li> V.V. Dvoeglazov. Photon-notoph equations. Phys. Scripta 64, 201 (2001).
<a href="https://doi.org/10.1238/Physica.Regular.064a00201">https://doi.org/10.1238/Physica.Regular.064a00201</a>
</li>
<li> V. Bargmann, E.P. Wigner. Group theoretical discussion of relativistic wave equations. Proc. Nat. Acad. Sci. USA 34, 211 (1948).
<a href="https://doi.org/10.1073/pnas.34.5.211">https://doi.org/10.1073/pnas.34.5.211</a>
</li>
<li> L. Bass, E. Schr?odinger. Must the photon mass be zero? Proc. R. Soc. London A 232, 1 (1955).
<a href="https://doi.org/10.1098/rspa.1955.0197">https://doi.org/10.1098/rspa.1955.0197</a>
</li>
<li> J.K. Luba’nski. Sur la theorie des particules elementaires de spin quelconque. I. Physica 9, 310 (1942).
<a href="https://doi.org/10.1016/S0031-8914(42)90113-7">https://doi.org/10.1016/S0031-8914(42)90113-7</a>
</li>
<li> T. Kaluza. Zum unitatsproblem der physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 966 (1921).
</li>
<li> O. Klein. Quantentheorie und f?unfdimensionale relativit?atstheorie. Zeit. Phys. 37, 895 (1926).
<a href="https://doi.org/10.1007/BF01397481">https://doi.org/10.1007/BF01397481</a>
</li>
<li> E. Majorana. Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43 (1932).
<a href="https://doi.org/10.1007/BF02960953">https://doi.org/10.1007/BF02960953</a>
</li>
<li> R. Penrose. A spinor approach to general relativity. Ann. Phys. 10, 171 (1960).
<a href="https://doi.org/10.1016/0003-4916(60)90021-X">https://doi.org/10.1016/0003-4916(60)90021-X</a>
</li>
<li> A.Z. Petrov. Clasification of spaces defining gravity fields. Uchen. Zapisk. Kazan. Gosud. Univer. 114, 55 (1954).
</li>
<li> Yu.P. Stepanovsky. Complete set of Fierz's relations in six-dimensional form. Ukr. J. Phys. 11, 1191 (1966).
</li>
<li> H. Weyl. Reine infinitesimalgeometrie. Mat. Zeit. 2, 384 (1918).
<a href="https://doi.org/10.1007/BF01199420">https://doi.org/10.1007/BF01199420</a></li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.