External-Electric-Field-Enhanced Uniformity and Deposition Rate of a TiO2 Film Prepared by the Sparking Process

Authors

  • W. Thongpan PhD’s Degree Program in Applied Physics, Faculty of Science, Chiang Mai University, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • T. Kumpika Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • E. Kantarak Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • A. Panthawan Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • P. Pooseekheaw Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • P. Singjai Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University, Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University
  • A. Tuantranont Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology, Development Agency
  • W. Thongsuwan Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University, Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University

DOI:

https://doi.org/10.15407/ujpe63.6.531

Keywords:

TiO2 film, sparking process, external electric fields

Abstract

We have used an external electric field to increase both the uniformity and deposition rate of TiO2 films. The experiment is carried out by sparking-off titanium wires with a high dc voltage of 1 kV (field Eint = 10 kV/cm) and a limited current of 3 mA. The external electric fields (Eext) of 3, 6, and 9 kV/cm were applied to the sparking system for 1–5 hours. The as-deposited film morphology was characterized by scanning electron microscopy. The results clearly show that the films are only deposited on the external electric field area. Furthermore, the deposition rate of the films increased from 40.7% to 77.8% in the presence of the external electric field of 9 kV/cm. The effects of an external electric field on both the deposition rate and uniformity of films are investigated and described.

References

<ol>
<li>P. Hou, J. Qian, X. Cheng, S.P. Shah. Effects of the poz- zolanic reactivity of nano SiO2 on cement-based materials. Cement & Concrete Compos. 55, 250 (2015).
<a href="https://doi.org/10.1016/j.cemconcomp.2014.09.014">https://doi.org/10.1016/j.cemconcomp.2014.09.014</a>
</li>
<li>R. Gong, G. Chen. Preparation and application of functionalized nano drug carriers. Saudi Pharm. J. 24, 254 (2016).
<a href="https://doi.org/10.1016/j.jsps.2016.04.010">https://doi.org/10.1016/j.jsps.2016.04.010</a>
</li>
<li>P. Subalakshmi, A. Sivashanmugam. CuO nano hexagons an efficient energy storage material for Li-ion battery application. J. Alloys Comp. 690, 523 (2017).
<a href="https://doi.org/10.1016/j.jallcom.2016.08.157">https://doi.org/10.1016/j.jallcom.2016.08.157</a>
</li>
<li>P. Catald, I.S. Bayer, R. Cingolani, S. Marras, R. Chellali, A. Athanassiou. Thermochromic superhydrophobic surface. Sci. Rep. 6, 1 (2016).
<a href="https://doi.org/10.1038/srep27984">https://doi.org/10.1038/srep27984</a>
</li>
<li>A. Soam, P. Kavle, A. Kumbhar, R.O. Dusane. Performance enhancement of micro-supercapacitor by coating of graphene on silicon nanowires at room temperature. Current Appl. Phys. 17, 314 (2017).
<a href="https://doi.org/10.1016/j.cap.2016.11.011">https://doi.org/10.1016/j.cap.2016.11.011</a>
</li>
<li>P.R. Somani, S.P. Somani, M. Umeno. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56 (2006).
<a href="https://doi.org/10.1016/j.cplett.2006.06.081">https://doi.org/10.1016/j.cplett.2006.06.081</a>
</li>
<li>G. Deokar, J. Avila, I.R. Colambo, J.L. Codron, C. Boyaval, E. Galopin, M.C. Asensio, D. Vignaud. Towards high quality CVD graphene growth and transfer. Carbon 89, 82 (2015).
<a href="https://doi.org/10.1016/j.carbon.2015.03.017">https://doi.org/10.1016/j.carbon.2015.03.017</a>
</li>
<li>N.K. Park, G.B. Han, J.D. Lee, S.O. Ryu, T.J. Lee, W.C. Chang, C.H. Chang. The growth of ZnO nano-wire by a thermal evaporation method with very small amount of oxygen. Current Appl. Phys. 6S1, e176 (2006).
</li>
<li>N. Donga, F. Hea, J. Xina, Q. Wanga, Z. Leia, B. Sua. A novel one-step hydrothermal method to prepare CoFe2O4/graphene-like carbons magnetic separable adsorbent. Materials Research Bulletin 80, 186 (2016).
<a href="https://doi.org/10.1016/j.materresbull.2016.04.003">https://doi.org/10.1016/j.materresbull.2016.04.003</a>
</li>
<li> T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen. Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Appl. Surf. Sci. 311, 602 (2014).
<a href="https://doi.org/10.1016/j.apsusc.2014.05.116">https://doi.org/10.1016/j.apsusc.2014.05.116</a>
</li>
<li> T. Hu, Y. Su, I.R. Baxendale, J. Tan, H. Tang, L. Xiao, F. Zheng, P. Ning. Adjust band gap of IATO nanoparticles to obtain desirable optical property by one-step hydrothermal oxidation. Current Appl. Phys. 17, 584 (2017).
<a href="https://doi.org/10.1016/j.cap.2017.01.011">https://doi.org/10.1016/j.cap.2017.01.011</a>
</li>
<li> J. Sicha, J. Musil, M. Meissner, R. Cerstvy. Nanostructure of photocatalytic TiO2 films sputtered at temperatures below 200 ?C. Appl. Surf. Sci. 254, 3793 (2008).
<a href="https://doi.org/10.1016/j.apsusc.2007.12.003">https://doi.org/10.1016/j.apsusc.2007.12.003</a>
</li>
<li> Y.T. Kim, J. Park, J. Choi. Sputter-deposited ZnO thin films consisting of nano-networks for binder-free dyesensitized solar cells. Current Appl. Phys. 13, 381 (2013).
<a href="https://doi.org/10.1016/j.cap.2012.08.015">https://doi.org/10.1016/j.cap.2012.08.015</a>
</li>
<li> X. Li, X. Quan, C. Kutal. Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle. Scripta Mater. 50, 499 (2004).
<a href="https://doi.org/10.1016/j.scriptamat.2003.10.031">https://doi.org/10.1016/j.scriptamat.2003.10.031</a>
</li>
<li> L. Duan, X. Zhao,Y. Zhang, H. Shen, R. Liu. Fabrication of flexible Al-doped ZnO films via sol–gel method. Mater. Lett. 162, 199 (2016).
<a href="https://doi.org/10.1016/j.matlet.2015.10.023">https://doi.org/10.1016/j.matlet.2015.10.023</a>
</li>
<li> Z. Xin, M. Lei, W. Jian-gang, Z. Hui-min. Investigation on ultrathin titanium oxide films synthesized by surfacesol–gel method. Optik 127, 2780 (2016).
<a href="https://doi.org/10.1016/j.ijleo.2015.11.183">https://doi.org/10.1016/j.ijleo.2015.11.183</a>
</li>
<li> K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Z.S. Hu. Effects of crystallization on the optical properties of ZnO nano-pillar thin films by sol-gel method. Current Appl. Phys. 11, 1243 (2011).
<a href="https://doi.org/10.1016/j.cap.2011.03.033">https://doi.org/10.1016/j.cap.2011.03.033</a>
</li>
<li> W. Thongsuwan, T. Kumpika, P. Singjai. Effect of high roughness on a long aging time of superhydrophilic TiO2 nanoparticle thin films. Current Appl. Phys. 11, 1237 (2011).
<a href="https://doi.org/10.1016/j.cap.2011.03.002">https://doi.org/10.1016/j.cap.2011.03.002</a>
</li>
<li> W. Thongsuwan, T. Kumpika, P. Singjai. Photocatalytic property of colloidal TiO2 nanoparticles prepared by sparking process. Current Appl. Phys. 8, 563 (2008).
<a href="https://doi.org/10.1016/j.cap.2007.10.004">https://doi.org/10.1016/j.cap.2007.10.004</a>
</li>
<li> T. Kumpika, W. Thongsuwan, P. Singjai. Atomic force microscopy imaging of ZnO nanodots deposited on quartz by sparking off different tip shapes. Surf. Interface Anal. 39, 58 (2007).
<a href="https://doi.org/10.1002/sia.2507">https://doi.org/10.1002/sia.2507</a>
</li>
<li> E. Zaminpayma, P. Nayebi. Electronic and electrical properties of silicon nanowire single wall carbon nanotube junction as a nanoelectronic switch. Comput. Mater. Sci. 110, 198 (2015).
<a href="https://doi.org/10.1016/j.commatsci.2015.08.034">https://doi.org/10.1016/j.commatsci.2015.08.034</a>
</li>
<li> R.E. Triambulo, J.W. Park. Electronic properties of transparent nano-composite electrodes for application in flexible electronics. Current Appl. Phys. 15, S12 (2015).
<a href="https://doi.org/10.1016/j.cap.2015.03.010">https://doi.org/10.1016/j.cap.2015.03.010</a>
</li>
<li> X. Jiao, L. Zhang, Y. Lv, Y. Su. A new alcohols sensor based on cataluminescence on nano-CdS. Sensors and Actuators B 186, 750 (2013).
<a href="https://doi.org/10.1016/j.snb.2013.06.077">https://doi.org/10.1016/j.snb.2013.06.077</a>
</li>
<li> S.Y. Lee, M. Takai, H.M. Kim, K. Ishihara. Preparation of nano-structured titanium oxide film for biosensor substrate by wet corrosion process. Current Appl. Phys. 9, e266 (2009).
<a href="https://doi.org/10.1016/j.cap.2009.06.051">https://doi.org/10.1016/j.cap.2009.06.051</a>
</li>
<li> H. Kim, S. Jang. AlGaN/GaN HEMT based hydrogen sensor with platinum nanonetwork gate electrode. Current Appl. Phys. 13, 1746 (2013).
<a href="https://doi.org/10.1016/j.cap.2013.07.008">https://doi.org/10.1016/j.cap.2013.07.008</a>
</li>
<li> Z. Ren, Y. Guo, P.X. Gao, Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance. Catalysis Today 258, 441 (2015).
<a href="https://doi.org/10.1016/j.cattod.2015.01.033">https://doi.org/10.1016/j.cattod.2015.01.033</a>
</li>
<li> R. Mimouni, A. Souissi, A. Madouri, K. Boubaker, M. Amlouk. High photocatalytic efficiency and stability of chromiumindium codoped ZnO thin films under sunlight irradiation for water purification development purposes. Current Appl. Phys. 17, 1058 (2017).
<a href="https://doi.org/10.1016/j.cap.2017.03.025">https://doi.org/10.1016/j.cap.2017.03.025</a>
</li>
<li> W. Chen, Y. Zhu, C. Yang, J. Zhang, M. Li, L. Li. Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel. J. of Power Sources 280, 132 (2015).
<a href="https://doi.org/10.1016/j.jpowsour.2015.01.089">https://doi.org/10.1016/j.jpowsour.2015.01.089</a>
</li>
<li> C. Zhang, J. Li, C. Shi, C. He, E. Liu, N. Zhao. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J. Energy Chem. 23, 324 (2014).
<a href="https://doi.org/10.1016/S2095-4956(14)60154-6">https://doi.org/10.1016/S2095-4956(14)60154-6</a>
</li>
<li> Z. Chen, X. Zhang, J. Fang, J. Liang, X. Liang, J. Sun, D. Zhang, N. Wang, H. Zhao, X. Chen, Q. Huang, C. Wei, Y. Zhao. Enhancement in electrical performance of thin-film silicon solar cells based on a micro- and nano-textured zinc oxide electrodes. Appl. Energy 135, 158 (2014).
<a href="https://doi.org/10.1016/j.apenergy.2014.08.097">https://doi.org/10.1016/j.apenergy.2014.08.097</a>
</li>
<li> M. Wanit, J. Yeo, S.J. Hong, Y.D. Suh, S.H. Ko, D. Lee, C.P. Grigoropoulos. ZnO nano-tree growth study for high efficiency solar cell. Energy Procedia 14, 1093 (2012).
<a href="https://doi.org/10.1016/j.egypro.2011.12.1060">https://doi.org/10.1016/j.egypro.2011.12.1060</a>
</li>
<li> J. Jang, M. Kim, Y. Kim, K. Kim, S.J. Baik, H. Lee, J.C. Lee. Three-dimensional a-Si:H thin-film solar cells with silver nano-rod back electrodes. Current Appl. Phys. 14, 637 (2014).
<a href="https://doi.org/10.1016/j.cap.2014.02.006">https://doi.org/10.1016/j.cap.2014.02.006</a>
</li>
<li> S. Schwyn, A. Schmidt-Ott. Aerosol generation by spark discharge. Aerosol Sci. 19, 639 (1988).
<a href="https://doi.org/10.1016/0021-8502(88)90215-7">https://doi.org/10.1016/0021-8502(88)90215-7</a>
</li>
<li> N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont, A. Schmidt-Ott. Generation of nanoparticles by spark discharge. Nanopart. Res. 11, 315 (2009).
<a href="https://doi.org/10.1007/s11051-008-9407-y">https://doi.org/10.1007/s11051-008-9407-y</a>
</li>
<li> T.V. Pfeiffer, J. Feng, A. Schmidt-Ott. New developments in spark production of nanoparticles. Adv. Powder Techn. 25, 56 (2014).
<a href="https://doi.org/10.1016/j.apt.2013.12.005">https://doi.org/10.1016/j.apt.2013.12.005</a>
</li>
<li> E.J. Lehtinen, M. R. Zachariah. Energy accumulation in nanoparticle collision and coalescence processes. Aerosol Sci. 33, 357 (2002).
<a href="https://doi.org/10.1016/S0021-8502(01)00177-X">https://doi.org/10.1016/S0021-8502(01)00177-X</a>
</li>
<li> R. Reinmann, M. Akram. Temporal investigation of a fast spark discharge in chemically inert gases. Phys. D Appl. Phys. 30, 1125 (1997).
</li>
<li> R.J. Hunter. Introduction to Modern Colloid Science (Oxford Univ. Press, 1993).
</li>
<li> F. Llewellyn Jones. Electrode erosion by spark discharges. Appl. Phys. 1, 60 (1950).</li>

Downloads

Published

2018-07-12

How to Cite

Thongpan, W., Kumpika, T., Kantarak, E., Panthawan, A., Pooseekheaw, P., Singjai, P., Tuantranont, A., & Thongsuwan, W. (2018). External-Electric-Field-Enhanced Uniformity and Deposition Rate of a TiO2 Film Prepared by the Sparking Process. Ukrainian Journal of Physics, 63(6), 531. https://doi.org/10.15407/ujpe63.6.531

Issue

Section

Surface physics

Most read articles by the same author(s)