TY - JOUR
AU - Pavlyuk, A.M.
PY - 2012/04/30
Y2 - 2024/11/14
TI - On T(n, 4) Torus Knots and Chebyshev Polynomials
JF - Ukrainian Journal of Physics
JA - Ukr. J. Phys.
VL - 57
IS - 4
SE - General problems of theoretical physics
DO - 10.15407/ujpe57.4.439
UR - https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021294
SP - 439
AB - <p>The Alexander polynomials ∆<sub><em>n</em>,3</sub>(<em>t</em>) and ∆<sub><em>n</em>,4</sub>(<em>t</em>) are presented as a sum of the Alexander polynomials ∆<sub><em>k</em>,2</sub>(<em>t</em>). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases, which are proposed to be the numerical invariants characterizing links and knots.</p>
ER -