TY - JOUR AU - Orlovskaya, S. G. AU - Skoropado, M. S. AU - Karimova, F. F. AU - Chernyak, V. Ya. AU - Vergun, L. Yu. PY - 2018/07/03 Y2 - 2024/03/28 TI - Electric Field Interaction with Hydrocarbon Flames JF - Ukrainian Journal of Physics JA - Ukr. J. Phys. VL - 63 IS - 5 SE - Surface physics DO - 10.15407/ujpe63.5.402 UR - https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018069 SP - 402 AB - <p><span class="fontstyle0">The problem of electric-field-assisted combustion for low-melting point hydrocarbons (paraffin wax, n-alkanes) attracts the attention of scientists in relation to the development of paraffin-based propellants. Our study is aimed at the detailed investigation of the dc electric field interaction with the flame of octadecane droplet. We have studied the melting and combustion of alkane particles in the electric field ranging from 33 kV/m to 117 kV/m. It is found that the melting rate decreases distinctly starting with the electric field strength&nbsp;E ∼ 80 kV/m. This effect is more pronounced at high gas temperatures (Ste&nbsp;&gt;1), when the melting time is about a few seconds. So, the melting process slows down in the dc electric field. At the same time, the burning rate constant rises by more than 10 percents. The obtained results can be used to develop efficient and clean technologies of fossil fuels combustion.<br> </span></p> ER -