Features of Microstructure of Chemically Obtained Graphene-Like Particles

  • I. Ovsiienko Physical Department, Taras Shevchenko National University of Kyiv
  • T. Len Physical Department, Taras Shevchenko National University of Kyiv
  • L. Matzui Physical Department, Taras Shevchenko National University of Kyiv
  • O. Lazarenko Physical Department, Taras Shevchenko National University of Kyiv
  • F. Le Normand Institut de Physique et Chimie des Mat´eriaux
  • A. Shames Department of Physics, Ben-Gurion University of the Negev


The graphene-like structures are investigated by methods of electron microscopy, EMR, and Raman spectroscopy. They were obtained by the chemical treatment and the sonication in different reagents. As a source for obtaining the graphene-like structures, the thermoexfoliated graphite was used. The number of graphite layers in the graphene-like structures, the shapes of individual particles, structural-morphological characteristics, and the homogeneity of the sizes of particles for specimens of the graphene-like structures obtained with different methods are estimated.


  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

  2. K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, A.K. Geim. Electronic properties of graphene. Phys. Stat. Sol. B 244, 4106 (2007).

  3. J. Scott Bunch,Y. Yaish, M. Brink, K. Bolotin, P. McEuen. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287 (2005).

  4. A.K. Geim. Graphene: Status and prospects. Science 324, 1530 (2009).

  5. I.A. Ovid'ko. Mechanical properties of graphene. Rev. Adv. Mater. Sci. 34, 12 (2013).

  6. A.R. Ranjbartoreh, B. Wang, X. Shen. The characterization of graphene paper for flexible electronics application. J. Appl. Phys. 109, 014306 (2011).

  7. K.M.F. Shahil, A.A. Balandin. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications 152 (15), 1331 (2012).

  8. J.R. Potts, D.R. Dreyer, C.W. Bielawski. Graphene-based polymer nanocomposites. Polymer 52 (1), 5 (2011).

  9. O. Yakovenko, L. Matzui, L. Vovchenko, A. Trukhanov, I. Kazakevich, S. Trukhanov, Yu. Prylutskyy, U. Ritter. Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mat. Sci. 52 (9), 5345 (2017).

  10. L. Vovchenko, Yu. Perets, I. Ovsiienko, L. Matzui, V. Oliynyk, V. Launetz. Shielding coatings based on carbon-polymer composites. Surf. Coat. Techn. 211, 196 (2012).

  11. I. Ovsiienko, O. Lazarenko, L. Matzui, O. Brusilovets, F.Le Normand, A. Shames. Influence of chemical treatment on the microstructure of nanographite. Phys. Stat. Sol. A 211, 2665 (2014).

  12. Yu.S. Perets, I.V. Ovsiienko, L.L. Vovchenko, O.A. Brusilovets, I.P. Pundyk. Characterization of nanodispersed graphite. Ukr. J. Phys. 57, 219 (2012).

  13. S.S. Bukalov, L.A. Mihalitsyn, Ya.V. Zubavichus. Investigation of the structure and physico-chemical properties of carbon materials. Ross. Khim. Zh. 1 (1), 83 (2006).

  14. L. Bokobza, J. Zhang. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Lett. 6, 601 (2012).

  15. M.S. Dresselhaus, G. Dresselhaus, R. Saitoc, A. Joriod. Raman spectroscopy of carbon nanotubes. Physics Reports 409, 47 (2005).

  16. Zhenhua Ni, Yingying Wang, Ting Yu, Zexiang Shen. Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008).

  17. S. Costa, E. Borowiak-Palen. Raman study on doped multiwalled carbon nanotubes. Acta Phys. Polonica A 116, 32 (2009).
How to Cite
Ovsiienko, I., Len, T., Matzui, L., Lazarenko, O., Le Normand, F., & Shames, A. (2018). Features of Microstructure of Chemically Obtained Graphene-Like Particles. Ukrainian Journal of Physics, 63(8), 759. https://doi.org/10.15407/ujpe63.8.759
Structure of materials