Features of Microstructure of Chemically Obtained Graphene-Like Particles

Authors

  • I. Ovsiienko Physical Department, Taras Shevchenko National University of Kyiv
  • T. Len Physical Department, Taras Shevchenko National University of Kyiv
  • L. Matzui Physical Department, Taras Shevchenko National University of Kyiv
  • O. Lazarenko Physical Department, Taras Shevchenko National University of Kyiv
  • F. Le Normand Institut de Physique et Chimie des Mat´eriaux
  • A. Shames Department of Physics, Ben-Gurion University of the Negev

DOI:

https://doi.org/10.15407/ujpe63.8.759

Abstract

The graphene-like structures are investigated by methods of electron microscopy, EMR, and Raman spectroscopy. They were obtained by the chemical treatment and the sonication in different reagents. As a source for obtaining the graphene-like structures, the thermoexfoliated graphite was used. The number of graphite layers in the graphene-like structures, the shapes of individual particles, structural-morphological characteristics, and the homogeneity of the sizes of particles for specimens of the graphene-like structures obtained with different methods are estimated.

References

<ol>
<li>A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
<a href="https://doi.org/10.1103/RevModPhys.81.109">https://doi.org/10.1103/RevModPhys.81.109</a>
</li>
<li>K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, A.K. Geim. Electronic properties of graphene. Phys. Stat. Sol. B 244, 4106 (2007).
<a href="https://doi.org/10.1002/pssb.200776208">https://doi.org/10.1002/pssb.200776208</a>
</li>
<li>J. Scott Bunch,Y. Yaish, M. Brink, K. Bolotin, P. McEuen. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287 (2005).
<a href="https://doi.org/10.1021/nl048111+">https://doi.org/10.1021/nl048111+</a>
</li>
<li>A.K. Geim. Graphene: Status and prospects. Science 324, 1530 (2009).
<a href="https://doi.org/10.1126/science.1158877">https://doi.org/10.1126/science.1158877</a>
</li>
<li>I.A. Ovid'ko. Mechanical properties of graphene. Rev. Adv. Mater. Sci. 34, 12 (2013).
</li>
<li>A.R. Ranjbartoreh, B. Wang, X. Shen. The characterization of graphene paper for flexible electronics application. J. Appl. Phys. 109, 014306 (2011).
<a href="https://doi.org/10.1063/1.3528213">https://doi.org/10.1063/1.3528213</a>
</li>
<li>K.M.F. Shahil, A.A. Balandin. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications 152 (15), 1331 (2012).
<a href="https://doi.org/10.1016/j.ssc.2012.04.034">https://doi.org/10.1016/j.ssc.2012.04.034</a>
</li>
<li>J.R. Potts, D.R. Dreyer, C.W. Bielawski. Graphene-based polymer nanocomposites. Polymer 52 (1), 5 (2011).
<a href="https://doi.org/10.1016/j.polymer.2010.11.042">https://doi.org/10.1016/j.polymer.2010.11.042</a>
</li>
<li>O. Yakovenko, L. Matzui, L. Vovchenko, A. Trukhanov, I. Kazakevich, S. Trukhanov, Yu. Prylutskyy, U. Ritter. Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mat. Sci. 52 (9), 5345 (2017).
<a href="https://doi.org/10.1007/s10853-017-0776-4">https://doi.org/10.1007/s10853-017-0776-4</a>
</li>
<li> L. Vovchenko, Yu. Perets, I. Ovsiienko, L. Matzui, V. Oliynyk, V. Launetz. Shielding coatings based on carbon-polymer composites. Surf. Coat. Techn. 211, 196 (2012).
<a href="https://doi.org/10.1016/j.surfcoat.2011.08.018">https://doi.org/10.1016/j.surfcoat.2011.08.018</a>
</li>
<li> I. Ovsiienko, O. Lazarenko, L. Matzui, O. Brusilovets, F.Le Normand, A. Shames. Influence of chemical treatment on the microstructure of nanographite. Phys. Stat. Sol. A 211, 2665 (2014).
<a href="https://doi.org/10.1002/pssa.201431400">https://doi.org/10.1002/pssa.201431400</a>
</li>
<li> Yu.S. Perets, I.V. Ovsiienko, L.L. Vovchenko, O.A. Brusilovets, I.P. Pundyk. Characterization of nanodispersed graphite. Ukr. J. Phys. 57, 219 (2012).
</li>
<li> S.S. Bukalov, L.A. Mihalitsyn, Ya.V. Zubavichus. Investigation of the structure and physico-chemical properties of carbon materials. Ross. Khim. Zh. 1 (1), 83 (2006).
</li>
<li> L. Bokobza, J. Zhang. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Lett. 6, 601 (2012).
<a href="https://doi.org/10.3144/expresspolymlett.2012.63">https://doi.org/10.3144/expresspolymlett.2012.63</a>
</li>
<li> M.S. Dresselhaus, G. Dresselhaus, R. Saitoc, A. Joriod. Raman spectroscopy of carbon nanotubes. Physics Reports 409, 47 (2005).
<a href="https://doi.org/10.1016/j.physrep.2004.10.006">https://doi.org/10.1016/j.physrep.2004.10.006</a>
</li>
<li> Zhenhua Ni, Yingying Wang, Ting Yu, Zexiang Shen. Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008).
<a href="https://doi.org/10.1007/s12274-008-8036-1">https://doi.org/10.1007/s12274-008-8036-1</a>
</li>
<li> S. Costa, E. Borowiak-Palen. Raman study on doped multiwalled carbon nanotubes. Acta Phys. Polonica A 116, 32 (2009).
<a href="https://doi.org/10.12693/APhysPolA.116.32">https://doi.org/10.12693/APhysPolA.116.32</a>
</li>

Downloads

Published

2018-09-07

How to Cite

Ovsiienko, I., Len, T., Matzui, L., Lazarenko, O., Le Normand, F., & Shames, A. (2018). Features of Microstructure of Chemically Obtained Graphene-Like Particles. Ukrainian Journal of Physics, 63(8), 759. https://doi.org/10.15407/ujpe63.8.759

Issue

Section

Structure of materials

Most read articles by the same author(s)